Cascading – An adjusted exchange method for robust conic programming

It is well known that the robust counterpart introduced by Ben-Tal and Nemirovski [2] increases the numerical complexity of the solution compared to the original problem. Kocvara, Nemirovski and Zowe therefore introduced in [9] an approximation algorithm for the special case of robust material optimization, called cascading. As the title already indicates, we will show … Read more

Decentralized Decision-making and Protocol Design for Recycled Material Flows

Reverse logistics networks often consist of several tiers with independent members competing at each tier. This paper develops a methodology to examine the individual entity behavior in reverse production systems where every entity acts to maximize its own benefits. We consider two tiers in the network, collectors and processors. The collectors determine individual flow functions … Read more

Portfolio Selection with Robust Estimation

Mean-variance portfolios constructed using the sample mean and covariance matrix of asset returns perform poorly out-of-sample due to estimation error. Moreover, it is commonly accepted that estimation error in the sample mean is much larger than in the sample covariance matrix. For this reason, practitioners and researchers have recently focused on the minimum-variance portfolio, which … Read more

On Safe Tractable Approximations of Chance Constrained Linear Matrix Inequalities

In the paper, we consider the chance constrained version $$ \Prob\{A_0[x]+\sum_{i=1}^d\zeta_i A_i[x]\succeq0\}\geq1-\epsilon, $$ of an affinely perturbed Linear Matrix Inequality constraint; here $A_i[x]$ are symmetric matrices affinely depending on the decision vector $x$, and $\zeta_1,…,\zeta_d$ are independent of each other random perturbations with light tail distributions (e.g., bounded or Gaussian). Constraints of this type, playing … Read more

Selected Topics in Robust Convex Optimization

Robust Optimization is a rapidly developing methodology for handling optimization problems affected by non-stochastic “uncertain-but-bounded” data perturbations. In this paper, we overview several selected topics in this popular area, specifically, (1) recent extensions of the basic concept of {\sl robust counterpart} of an optimization problem with uncertain data, (2) tractability of robust counterparts, (3) links … Read more

A New Stochastic Algorithm for Engineering Optimization Problems

This paper proposes a new stochastic algorithm, Search via Probability (SP) algorithm, for single-objective optimization problems. The SP algorithm uses probabilities to control the process of searching for optimal solutions. We calculate probabilities of the appearance of a better solution than the current one on each iteration, and on the performance of SP algorithm we … Read more

Asynchronous parallel generating set search for linearly-constrained optimization

Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the … Read more

Goal Driven Optimization

Achieving a targeted objective, goal or aspiration level are relevant aspects of decision making under uncertainties. We develop a goal driven stochastic optimization model that takes into account an aspiration level. Our model maximizes the shortfall aspiration level criterion}, which encompasses the probability of success in achieving the goal and an expected level of under-performance … Read more

Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty

Traditional models of decision-making under uncertainty assume perfect information, i.e., accurate values for the system parameters and specific probability distributions for the random variables. However, such precise knowledge is rarely available in practice, and a strategy based on erroneous inputs might be infeasible or exhibit poor performance when implemented. The purpose of this tutorial is … Read more

Polyhedral aspects of a robust knapsack problem

While dealing with uncertainty in linear programs, the robust optimization framework proposed by Bertsimas and Sim appears as relevant. In particular, it can readily be extended for integer linear programming. This paper outlines the polyhedral impacts of this robust model for the 0-1 knapsack problem. It shows especially how the classical cover cuts can be … Read more