On the Impact of Deep Learning-based Time-series Forecasts on Multistage Stochastic Programming Policies

Multistage stochastic programming provides a modeling framework for sequential decision-making problems that involve uncertainty. One typically overlooked aspect of this methodology is how uncertainty is incorporated into modeling. Traditionally, statistical forecasting techniques with simple forms, e.g., (first-order) autoregressive time-series models, are used to extract scenarios to be added to optimization models to represent the uncertain … Read more

Multistage stochastic programs with the entropic risk measure

Over the last two decades, coherent risk measures have been well studied as a principled, axiomatic way to measure the risk of a random variable. Because of this axiomatic approach, coherent risk measures have a number of attractive features for computation, and they have been integrated into a variety of stochastic programming algorithms, including stochastic … Read more

Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters

Many key problems in machine learning and data science are routinely modeled as optimization problems and solved via optimization algorithms. With the increase of the volume of data and the size and complexity of the statistical models used to formulate these often ill-conditioned optimization tasks, there is a need for new efficient algorithms able to … Read more

A Shared Mobility Based Framework for Evacuation Planning and Operations under Forecast Uncertainty

To meet evacuation needs from carless populations who may require personalized assistance to evacuate safely, we propose a ridesharing-based evacuation program that recruits volunteer drivers before a disaster strikes, and then matches volunteers with evacuees who need assistance once demand is realized. We optimize resource planning and evacuation operations under uncertain spatiotemporal demand, and construct … Read more

Large Deviation Bounds for Markov Chain Sample Average Approximation via Weak Convergence

A common approach to solve stochastic optimization problems with expectations is to replace the expectations by its sample averages. Large sample asymptotic properties of this approximation are well studied when the sample is i.i.d. In many cases, however, i.i.d. samples are not readily available. On the contrary, one can generate a Harris recurrent Markov chain … Read more

An Improved Analysis of Stochastic Gradient Descent with Momentum

SGD with momentum (SGDM) has been widely applied in many machine learning tasks, and it is often applied with dynamic stepsizes and momentum weights tuned in a stagewise manner. Despite of its empirical advantage over SGD, the role of momentum is still unclear in general since previous analyses on SGDM either provide worse convergence bounds … Read more

Accuracy and fairness trade-offs in machine learning: A stochastic multi-objective approach

In the application of machine learning to real life decision-making systems, e.g., credit scoring and criminal justice, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness. The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction … Read more

Equilibrium Oil Market Share under the COVID-19 Pandemic

Equilibrium models for energy markets under uncertain demand and supply have attracted considerable attentions. This paper focuses on modelling crude oil market share under the COVID-19 pandemic using two-stage stochastic equilibrium. We describe the uncertainties in the demand and supply by random variables and provide two types of production decisions (here-and-now and wait-and-see). The here-and-now … Read more

Data-driven sample average approximation with covariate information

We study optimization for data-driven decision-making when we have observations of the uncertain parameters within the optimization model together with concurrent observations of covariates. Given a new covariate observation, the goal is to choose a decision that minimizes the expected cost conditioned on this observation. We investigate three data-driven frameworks that integrate a machine learning … Read more

Multi-period investment pathways – Modeling approaches to design distributed energy systems under uncertainty

Multi-modal distributed energy system planning is applied in the context of smart grids, industrial energy supply, and in the building energy sector. In real-world applications, these systems are commonly characterized by existing system structures of different age where monitoring and investment are conducted in a closed-loop, with the iterative possibility to invest. The literature contains … Read more