Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function

We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three algorithms to calculate it. We then show how this generalized value function can be used to reformulate two classes of mixed-integer optimization problems: two-stage stochastic … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

Multi-stage Stochastic Programming for Demand Response Optimization

The increase in the energy consumption puts pressure on natural resources and environment and results in a rise in the price of energy. This motivates residents to schedule their energy consumption through demand response mechanism. We propose a multi-stage stochastic programming model to schedule different kinds of electrical appliances under uncertain weather conditions and availability … Read more

Envelope Theorems for Multi-Stage Linear Stochastic Optimization

We propose a method to compute derivatives of multi-stage linear stochastic optimization problems with respect to parameters that influence the problem’s data. Our results are based on classical envelope theorems, and can be used in problems directly solved via their deterministic equivalents as well as in stochastic dual dynamic programming for which the derivatives of … Read more

On Distributionally Robust Chance Constrained Programs with Wasserstein Distance

This paper studies a distributionally robust chance constrained program (DRCCP) with Wasserstein ambiguity set, where the uncertain constraints should be satisfied with a probability at least a given threshold for all the probability distributions of the uncertain parameters within a chosen Wasserstein distance from an empirical distribution. In this work, we investigate equivalent reformulations and … Read more

A scenario decomposition algorithm for strategic time window assignment vehicle routing problems

We study the strategic decision-making problem of assigning time windows to customers in the context of vehicle routing applications that are affected by operational uncertainty. This problem, known as the Time Window Assignment Vehicle Routing Problem, can be viewed as a two-stage stochastic optimization problem, where time window assignments constitute first-stage decisions, vehicle routes adhering … Read more

Inexact Stochastic Mirror Descent for two-stage nonlinear stochastic programs

We introduce an inexact variant of Stochastic Mirror Descent (SMD), called Inexact Stochastic Mirror Descent (ISMD), to solve nonlinear two-stage stochastic programs where the second stage problem has linear and nonlinear coupling constraints and a nonlinear objective function which depends on both first and second stage decisions. Given a candidate first stage solution and a … Read more

Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs

In this paper, we derive (partial) convex hull for deterministic multi-constraint polyhedral conic mixed integer sets with multiple integer variables using conic mixed integer rounding (CMIR) cut-generation procedure of Atamtürk and Narayanan (Math Prog 122:1–20, 2008), thereby extending their result for a simple polyhedral conic mixed integer set with single constraint and one integer variable. … Read more

Coalescing Data and Decision Sciences for Analytics

The dream of analytics is to work from common, clean, and consistent data sources in a manner that all of its facets (descriptive, predictive, and prescriptive) are sup- ported via a coherent vision of data and decision sciences. To the extent that data and decisions sciences work within logically/mathematically consistent frameworks, and that these paradigms … Read more

Shortfall Risk Models When Information of Loss Function Is Incomplete

Utility-based shortfall risk measure (SR) has received increasing attentions over the past few years for its potential to quantify more effectively the risk of large losses than conditional value at risk. In this paper we consider the case that the true loss function is unavailable either because it is difficult to be identified or the … Read more