A Theoretical and Computational Analysis of Full Strong-Branching

Full strong-branching (henceforth referred to as strong-branching) is a well-known variable selection rule that is known experimentally to produce significantly smaller branch-and-bound trees in comparison to all other known variable selection rules. In this paper, we attempt an analysis of the performance of the strong-branching rule both from a theoretical and a computational perspective. On … Read more

An Integrated Rolling Horizon and Adaptive-Refinement Approach for Disjoint Trajectories Optimization

Planning of trajectories, i.e. paths over time, is a challenging task. Thereby, the trajectories for involved commodities often have to be considered jointly as separation constraints have to be respected. This is for example the case in robot motion or air traffic management. Involving these discrete separation constraints in the planning of best possible continuous … Read more

MPCC Strategies for Nonsmooth NLPs

This paper develops solution strategies for large-scale nonsmooth optimization problems. We transform nonsmooth programs into equivalent mathematical programs with complementarity constraints (MPCCs), and then employ NLP-based strategies for their so- lution. For this purpose, two NLP formulations based on complementarity relaxations are put forward, one of which applies a parameterized formulation and operates with a … Read more

A New Extension of Chubanov’s Method to Symmetric Cones

We propose a new variant of Chubanov’s method for solving the feasibility problem over the symmetric cone by extending Roos’s method (2018) of solving the feasibility problem over the nonnegative orthant. The proposed method considers a feasibility problem associated with a norm induced by the maximum eigenvalue of an element and uses a rescaling focusing … Read more

A Sum of Squares Characterization of Perfect Graphs

We present an algebraic characterization of perfect graphs, i.e., graphs for which the clique number and the chromatic number coincide for every induced subgraph. We show that a graph is perfect if and only if certain nonnegative polynomials associated with the graph are sums of squares. As a byproduct, we obtain several infinite families of … Read more

Inertial-relaxed splitting for composite monotone inclusions

In a similar spirit of the extension of the proximal point method developed by Alves et al. \cite{alvegm20}, we propose in this work an Inertial-Relaxed primal-dual splitting method to address the problem of decomposing the minimization of the sum of three convex functions, one of them being smooth, and considering a general coupling subspace. A … Read more

A Unifying Framework for the Capacitated Vehicle Routing Problem under Risk and Ambiguity

We propose a generic model for the capacitated vehicle routing problem (CVRP) under demand uncertainty. By combining risk measures, satisficing measures or disutility functions with complete or partial characterizations of the probability distribution governing the demands, our formulation bridges the popular but often independently studied paradigms of stochastic programming and distributionally robust optimization. We characterize … Read more

Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free Optimization

A common approach for minimizing a smooth nonlinear function is to employ finite-difference approximations to the gradient. While this can be easily performed when no error is present within the function evaluations, when the function is noisy, the optimal choice requires information about the noise level and higher-order derivatives of the function, which is often … Read more

Statistical Inference of Contextual Stochastic Optimization with Endogenous Uncertainty

This paper considers contextual stochastic optimization with endogenous uncertainty, where random outcomes depend on both contextual information and decisions. We analyze the statistical properties of solutions from two prominent approaches: predict-then-optimize (PTO), which first predicts a model between outcomes, contexts, and decisions, and then optimizes the downstream objective; and estimate- then-optimize (ETO), which directly estimates … Read more

Complexity of optimizing over the integers

In the first part of this paper, we present a unified framework for analyzing the algorithmic complexity of any optimization problem, whether it be continuous or discrete in nature. This helps to formalize notions like “input”, “size” and “complexity” in the context of general mathematical optimization, avoiding context dependent definitions which is one of the … Read more