Solving unbounded optimal control problems with the moment-SOS hierarchy

The behaviour of the moment-sums-of-squares (moment-SOS) hierarchy for polynomial optimal control problems on compact sets has been explored to a large extent. Our contribution focuses on the case of non-compact control sets. We describe a new approach to optimal control problems with unbounded controls, using compactification by partial homogenization, leading to an equivalent infinite dimensional … Read more

Strategic design of collection and delivery point networks for urban parcel distribution

Collection and delivery points (CDPs) allow logistics operators to consolidate multiple customer request deliveries on a single vehicle stop, reducing distribution costs. However, for customers to adopt CDPs, they must be willing to travel to a nearby CDP to pick up their parcels. This choice depends on personal preferences, the proximity of CDPs, and economic … Read more

An extrapolated and provably convergent algorithm for nonlinear matrix decomposition with the ReLU function

Nonlinear matrix decomposition (NMD) with the ReLU function, denoted ReLU-NMD, is the following problem: given a sparse, nonnegative matrix \(X\) and a factorization rank \(r\), identify a rank-\(r\) matrix \(\Theta\) such that \(X\approx \max(0,\Theta)\). This decomposition finds application in data compression, matrix completion with entries missing not at random, and manifold learning. The standard ReLU-NMD … Read more

NonOpt: Nonconvex, Nonsmooth Optimizer

NonOpt, a C++ software package for minimizing locally Lipschitz objective functions, is presented. The software is intended primarily for minimizing objective functions that are nonconvex and/or nonsmooth. The package has implementations of two main algorithmic strategies: a gradient-sampling and a proximal-bundle method. Each algorithmic strategy can employ quasi-Newton techniques for accelerating convergence in practice. The … Read more

Rounding in Mixed-Integer Model Predictive Control

We derive practical stability results for finite-control set and mixed-integer model predictive control. Thereby, we investigate the evolution of the closed-loop system in the presence of control rounding and draw conclusions about optimality. The paper integrates integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions. We propose … Read more

Local Linear Convergence of the Alternating Direction Method of Multipliers for Semidefinite Programming under Strict Complementarity

We investigate the local linear convergence properties of the Alternating Direction Method of Multipliers (ADMM) when applied to Semidefinite Programming (SDP). A longstanding belief suggests that ADMM is only capable of solving SDPs to moderate accuracy, primarily due to its sublinear worst-case complexity and empirical observations of slow convergence. We challenge this notion by introducing … Read more

The Least Singular Value Function in Variational Analysis

Metric regularity is among the central concepts of nonlinear and variational analysis, constrained optimization, and their numerous applications. However, met- ric regularity can be elusive for some important ill-posed classes of problems includ- ing polynomial equations, parametric variational systems, smooth reformulations of complementarity systems with degenerate solutions, etc. The study of stability issues for such … Read more

Climate-Resilient Nodal Power System Expansion Planning for a Realistic California Test Case

Climate change is increasingly impacting power system operations, not only through more frequent extreme weather events but also through shifts in routine weather patterns. Factors such as increased temperatures, droughts, changing wind patterns, and solar irradiance shifts can impact both power system production and transmission and electric load. The current power system was not designed … Read more

Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

New Sufficient and Necessary Conditions for Constrained and Unconstrained Lipschitzian Error Bounds

Local error bounds play a fundamental role in mathematical programming and variational analysis. They are used e.g. as constraint qualifications in optimization, in developing calculus rules for generalized derivatives in nonsmooth and set-valued analysis, and they serve as a key ingredient in the design and convergence analysis of Newton-type methods for solving systems of possibly … Read more