Complexity of quadratic penalty methods with adaptive accuracy under a PL condition for the constraints

We study the quadratic penalty method (QPM) for smooth nonconvex optimization problems with equality constraints. Assuming the constraint violation satisfies the PL condition near the feasible set, we derive sharper worst-case complexity bounds for obtaining approximate first-order KKT points. When the objective and constraints are twice continuously differentiable, we show that QPM equipped with a … Read more

On Supportedness-Promoting Image Space Transformations in Multiobjective Optimization

We study the supportedness of nondominated points of multiobjective optimization problems, that is, whether they can be obtained via weighted sum scalarization. One key question is how supported points behave under an efficiency-preserving transformation of the original problem. Under a differentiability assumption, we characterize the transformations that preserve both efficiency and supportedness as the component-wise … Read more

A derivative-free trust-region approach for Low Order-Value Optimization problems

The Low Order-Value Optimization (LOVO) problem involves minimizing the minimum among a finite number of function values within a feasible set. LOVO has several practical applications such as robust parameter estimation, protein alignment, portfolio optimization, among others. In this work, we are interested in the constrained nonlinear optimization LOVO problem of minimizing the minimum between … Read more

Robust combinatorial optimization problems under locally budgeted interdiction uncertainty against the objective function and covering constraints

Recently robust combinatorial optimization problems with budgeted interdiction uncertainty affecting cardinality-based constraints or objective were considered by presenting, comparing and experimenting with compact formulations. In this paper we present a compact formulation for the case in which locally budgeted interdiction uncertainty affects the objective function and covering constraints simultaneously. ArticleDownload View PDF

The SCIP Optimization Suite 10.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming (CIP) framework SCIP. This report discusses the enhancements and extensions included in SCIP Optimization Suite 10.0. The updates in SCIP 10.0 include a new solving mode for exactly solving rational mixed-integer linear programs, a new presolver … Read more

On Solving Chance-Constrained Models with Gaussian Mixture Distribution

We study linear chance-constrained problems where the coefficients follow a Gaussian mixture distribution. We provide mixed-binary quadratic programs that give inner and outer approximations of the chance constraint based on piecewise linear approximations of the standard normal cumulative density function. We show that $O\left(\sqrt{\ln(1/\tau)/\tau} \right)$ pieces are sufficient to attain $\tau$-accuracy in the chance constraint. … Read more

On the Convergence of Constrained Gradient Method

The constrained gradient method (CGM) has recently been proposed to solve convex optimization and monotone variational inequality (VI) problems with general functional constraints. While existing literature has established convergence results for CGM, the assumptions employed therein are quite restrictive; in some cases, certain assumptions are mutually inconsistent, leading to gaps in the underlying analysis. This … Read more