Representing Integer Program Value Function with Neural Networks

We study the value function of an integer program (IP) by characterizing how its optimal value changes as the right-hand side varies. We show that the IP value function can be approximated to any desired degree of accuracy using machine learning (ML) techniques. Since an IP value function is a Chvátal-Gomory (CG) function, we first … Read more

Frequency regulation with storage: On losses and profits

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future … Read more

An inexact infeasible arc-search interior-point method for linear programming problems

Arc-search interior-point methods (IPMs) are a class of IPMs that utilize an ellipsoidal arc to approximate the central path. On the other hand, inexact IPMs solve the linear equation system for the search direction inexactly at each iteration. In this paper, we propose an inexact infeasible arc-search interior-point method. We establish that the proposed method … Read more

Stochastic Aspects of Dynamical Low-Rank Approximation in the Context of Machine Learning

The central challenges of today’s neural network architectures are the prohibitive memory footprint and training costs associated with determining optimal weights and biases. A large portion of research in machine learning is therefore dedicated to constructing memory-efficient training methods. One promising approach is dynamical low-rank training (DLRT), which represents and trains parameters as a low-rank … Read more

Fast convergence of the primal-dual dynamical system and algorithms for a nonsmooth bilinearly coupled saddle point problem

This paper is devoted to study the convergence rates of a second-order dynamical system and its corresponding discretizations associated with a nonsmooth bilinearly coupled convex-concave saddle point problem. We derive the convergence rate of the primal-dual gap for the second-order dynamical system with asymptotically vanishing damping term. Based on the implicit discretization, we propose a … Read more

Model Construction for Convex-Constrained Derivative-Free Optimization

We develop a new approximation theory for linear and quadratic interpolation models, suitable for use in convex-constrained derivative-free optimization (DFO). Most existing model-based DFO methods for constrained problems assume the ability to construct sufficiently accurate approximations via interpolation, but the standard notions of accuracy (designed for unconstrained problems) may not be achievable by only sampling … Read more

Certified Constraint Propagation and Dual Proof Analysis in a Numerically Exact MIP Solver

This paper presents the integration of constraint propagation and dual proof analysis in an exact, roundoff-error-free MIP solver. The authors employ safe rounding methods to ensure that all results remain provably correct, while sacrificing as little computational performance as possible in comparison to a pure floating-point implementation. The study also addresses the adaptation of certification … Read more

Similarity-based Decomposition Algorithm for Two-stage Stochastic Scheduling

This paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the non-anticipative constraints are removed from the problem formulation so that the … Read more

Using Disjunctive Cuts in a Branch-and-Cut Method to Solve Convex Integer Nonlinear Bilevel Problems

We present a branch-and-cut method for solving convex integer nonlinear bilevel problems, i.e., bilevel models with nonlinear but jointly convex objective functions and constraints in both the upper and the lower level. To this end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but bilevel-infeasible points. These cuts can be obtained … Read more

Scalable Projection-Free Optimization Methods via MultiRadial Duality Theory

Recent works have developed new projection-free first-order methods based on utilizing linesearches and normal vector computations to maintain feasibility. These oracles can be cheaper than orthogonal projection or linear optimization subroutines but have the drawback of requiring a known strictly feasible point to do these linesearches with respect to. In this work, we develop new … Read more