Large neighbourhood Benders’ search

A general enhancement of the Benders’ decomposition algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, their use is typically limited to finding solutions to the Benders’ decomposition master problem, which may be … Read more

Reliable single allocation hub location problem under hub breakdowns

The design of hub-and-spoke transport networks is a strategic planning problem, as the choice of hub locations has to remain unchanged for long time periods. However, strikes, disasters or traffic breakdown can lead to the unavailability of a hub for a short period of time. Therefore it is important to consider such events already in … Read more

A Benders decomposition based framework for solving cable trench problems

In this work, we present an algorithmic framework based on Benders decomposition for the Capacitated p-Cable Trench Problem with Covering. We show that our approach can be applied to most variants of the Cable Trench Problem (CTP) that have been considered in the literature. The proposed algorithm is augmented with a stabilization procedure to accelerate … Read more

Formulations and Decomposition Methods for the Incomplete Hub Location Problem With and Without Hop-Constraints

The incomplete hub location problem with and without hop-constraints is modeled using a Leontief substitution system approach. The Leontief formalism provides a set of important theoretical properties and delivers formulations with tight linear bounds that can explicitly incorporate hop constraints for each origin-destination pair of demands. Furthermore, the proposed formulations are amenable to a Benders … Read more

Combinatorial Benders Cuts for Assembly Line Balancing Problems with Setups

The classical assembly line balancing problem consists of assigning assembly work to workstations. In the presence of setup times that depend on the sequence of tasks assigned to each workstation, the problem becomes more complicated given that two interdependent problems, namely assignment and sequencing, must be solved simultaneously. The hierarchical nature of these two problems … Read more

A Benders Decomposition Approach for the Charging Station Location Problem with Plug-in Hybrid Electric Vehicles

The flow refueling location problem (FRLP) locates $p$ stations in order to maximize the flow volume that can be accommodated in a road network respecting the range limitations of the vehicles. This paper introduces the charging station location problem with plug-in hybrid electric vehicles (CSLP-PHEV) as a generalization of the FRLP. We consider not only … Read more

A two-level SDDP Solving Strategy with Risk-Averse multivariate reservoir Storage Levels for Long Term power Generation Planning

Power generation planning in large-scale hydrothermal systems is a complex optimization task, specially due to the high uncertainty in the inflows to hydro plants. Since it is impossible to traverse the huge scenario tree of the multi-stage problem, stochastic dual dynamic programming (SDDP) is the leading optimization technique to solve it, originally from an expected-cost … Read more

Efficient approaches for the robust network loading problem

We consider the Robust Network Loading problem with splittable flows and demands that belong to the budgeted uncertainty set. We compare the optimal solution cost and computational cost of the problem when using static routing, volume routing, affine routing, and dynamic routing. For the first three routing types, we compare the compact formulation with a … Read more

A Generalization of Benders’ Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

We describe a generalization of Benders’ method for solving two-stage stochastic linear optimization problems in which there are both continuous and integer variables in the first and second stages. Benders’ method relies on finding effective lower approximations for the value function of the second-stage problem. In this setting, the value function is a discontinuous, non-convex, … Read more

The unrooted set covering connected subgraph problem differentiating between HIV envelope sequences

This paper presents a novel application of operations research techniques to the analysis of HIV env gene sequences, aiming to identify key features that are possible vaccine targets. These targets are identified as being critical to the transmission of HIV by being present in early transmitted (founder) sequences and absent in later chronic sequences. Identifying … Read more