Combinatorial Optimization Problems in Engineering Applications

This paper deals with several combinatorial optimization problems. The most challenging such problem is the quadratic assignment problem. It is considered in both two dimensions (QAP) and in three dimensions (Q3AP) and in the context of communication engineering. Semidefinite relaxations are used to derive lower bounds for the optimum while heuristics are applied to either … Read more

A new mixed integer linear model for the berth allocation and quay crane assignment problem

Efficient management of operations in seaport container terminals has become a critical issue, due to the increase in maritime traffic and the strong competition between ports. In this paper we focus on two seaside operational problems: the Berth Allocation Problem and the Quay Crane Assignment Problem, which are considered in an integrated way. For the … Read more

Robust combinatorial optimization with knapsack uncertainty

We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertismas and Sim (2003). We also study the … Read more

Maximizing a class of utility functions over the vertices of a polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we study the discrete optimization problem of finding a vertex of X that maximizes the utility function c’x + g(d’x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic … Read more

Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators

We consider operators acting on convex subsets of the unit hypercube. These operators are used in constructing convex relaxations of combinatorial optimization problems presented as a 0,1 integer programming problem or a 0,1 polynomial optimization problem. Our focus is mostly on operators that, when expressed as a lift-and-project operator, involve the use of semidefiniteness constraints … Read more

Bi-objective branch–and–cut algorithms: Applications to the single source capacitated facility location problem

Most real–world optimization problems are of a multi–objective nature, involving objectives which are conflicting and incomparable. Solving a multi–objective optimization problem requires a method which can generate the set of rational compromises between the objectives. In this paper, we propose two distinct bound set based branch–and–cut algorithms for bi–objective combinatorial optimization problems, based on implicitly … Read more

Combinatorial Benders Cuts for Assembly Line Balancing Problems with Setups

The classical assembly line balancing problem consists of assigning assembly work to workstations. In the presence of setup times that depend on the sequence of tasks assigned to each workstation, the problem becomes more complicated given that two interdependent problems, namely assignment and sequencing, must be solved simultaneously. The hierarchical nature of these two problems … Read more

A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph

We study the Knapsack Problem with Conflict Graph (KPCG), an extension of the 0-1 Knapsack Problem, in which a conflict graph describing incompatibilities between items is given. The goal of the KPCG is to select the maximum profit set of compatible items while satisfying the knapsack capacity constraint. We present a new Branch-and-Bound approach to … Read more

On the exact separation of rank inequalities for the maximum stable set problem

When addressing the maximum stable set problem on a graph G = (V,E), rank inequalities prescribe that, for any subgraph G[U] induced by U ⊆ V , at most as many vertices as the stability number of G[U] can be part of a stable set of G. These inequalities are very general, as many of … Read more

A several new mixed integer linear programming formulations for exploration of online social networks

The goal of this paper is to identify the most promising sets of closest assignment constraints from the literature, in order to improve mixed integer linear programming formulations for exploration of information flow within a social network. The direct comparison between proposed formulations is performed on standard single source capacitated facility location problem instances. Therefore, … Read more