Value-at-Risk optimization using the difference of convex algorithm

Value-at-Risk (VaR) is an integral part of contemporary financial regulations. Therefore, the measurement of VaR and the design of VaR optimal portfolios are highly relevant problems for financial institutions. This paper treats a VaR constrained Markowitz style portfolio selection problem when the distribution of returns of the considered assets are given in the form of … Read more

Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, … Read more

A p-Cone Sequential Relaxation Procedure for 0-1 Integer Programs

Given a 0-1 integer programming problem, several authors have introduced sequential relaxation techniques — based on linear and/or semidefinite programming — that generate the convex hull of integer points in at most $n$ steps. In this paper, we introduce a sequential relaxation technique, which is based on $p$-order cone programming ($1 \le p \le \infty$). … Read more

Dissimilarity Measures for Population-Based Global Optimization Algorithms

Very hard optimization problems, i.e., problems with a large number of variables and local minima, have been effectively attacked with algorithms which mix local searches with heuristic procedures in order to widely explore the search space. A Population Based Approach based on a Monotonic Basin Hopping optimization algorithm has turned out to be very effective … Read more

Another Face of DIRECT

It is shown that, contrary to a claim of [D. E. Finkel, and C. T. Kelley, Additive scaling and the DIRECT algorithm, J. Glob. Optim. 36 (2006) 597-608], it is possible to divide the smallest hypercube which contains the low function value by considering hyperrectangles whose points are located on the diagonal of the center … Read more

Solving systems of nonlinear equations with continuous GRASP

A method for finding all roots of a system of nonlinear equations is described. Our method makes use of C-GRASP, a recently proposed continuous global optimization heuristic. Given a nonlinear system, we solve a corresponding adaptively modified global optimization problem multiple times, each time using C-GRASP, with areas of repulsion around roots that have already … Read more

A continuous GRASP to determine the relationship between drugs and adverse reactions

Adverse drug reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and … Read more

The complexity of optimizing over a simplex, hypercube or sphere: a short survey

We consider the computational complexity of optimizing various classes of continuous functions over a simplex, hypercube or sphere. These relatively simple optimization problems have many applications. We review known approximation results as well as negative (inapproximability) results from the recent literature. CitationCentER Discussion paper 2006-85 Tilburg University THe NetherlandsArticleDownload View PDF

Speeding up continuous GRASP

Continuous GRASP (C-GRASP) is a stochastic local search metaheuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints (Hirsch et al., 2006). Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. In … Read more

Solving molecular distance geometry problems by global optimization algorithms

In this paper we consider global optimization algorithms based on multiple local searches for the Molecular Distance Geometry Problem (MDGP). Three distinct approaches (Multistart, Monotonic Basin Hopping, Population Basin Hopping) are presented and for each of them a computational analysis is performed. The results are also compared with those of two other approaches in the … Read more