A mixed integer programming approach to reduce fuel load accumulation for prescribed burn planning

The increasing frequency of destructive wild land fires, with a consequent loss of life and property, has led to fire and land management agencies initiating extensive fuel management programs. This involves long-term scheduling of the location of fuel reduction activities such as prescribed burning or mechanical clearing. In this paper a Mixed Integer Programming (MIP) … Read more

Certificates of Optimality and Sensitivity Analysis using Generalized Subadditive Generator Functions: A test study on Knapsack Problems

We introduce a family of subadditive functions called Generator Functions for mixed integer linear programs. These functions were previously defined for pure integer programs with non-negative entries by Klabjan [13]. They are feasible in the subadditive dual and we show that they are enough to achieve strong duality. Several properties of the functions are shown. … Read more

Facets for Continuous Multi-Mixing Set with General Coefficients and Bounded Integer Variables

Bansal and Kianfar introduced continuous multi-mixing set where the coefficients satisfy the so-called n-step MIR conditions and developed facet-defining inequalities for this set. In this paper, we first generalize their inequalities for the continuous multi-mixing set with general coefficients (where no conditions are imposed on the coefficients) and show that they are facet-defining in many … Read more

Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs

Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller … Read more

Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization

Decision rules provide a flexible toolbox for solving the computationally demanding, multistage adaptive optimization problems. There is a plethora of real-valued decision rules that are highly scalable and achieve good quality solutions. On the other hand, existing binary decision rule structures tend to produce good quality solutions at the expense of limited scalability, and are … Read more

On the Value Function of a Mixed Integer Linear Optimization Problem and an Algorithm for its Construction

This paper addresses the value function of a general mixed integer linear optimization problem (MILP). The value function describes the change in optimal objective value as the right-hand side is varied and understanding its structure is central to solving a variety of important classes of optimization problems. We propose a discrete representation of the MILP … Read more

Solving Bilevel Mixed Integer Program by Reformulations and Decomposition

In this paper, we study bilevel mixed integer programming (MIP) problem and present a novel computing scheme based on reformulations and decomposition strategy. By converting bilevel MIP into a constrained mathematical program, we present its single-level reformulations that are friendly to perform analysis and build insights. Then, we develop a decomposition algorithm based on column-and-constraint … Read more

Analysis of mixed integer programming formulations for single machine scheduling problems with sequence dependent setup times and release dates

In this article, six different mixed integer programming (MIP) formulations are proposed and analyzed. These formulations are based on the knowledge of four different paradigms for single machine scheduling problems (SMSP) with sequence dependent setup times and release dates. Each formulation reflects a specific concept on how the variables and parameters are defined, requiring particular … Read more

Tight MIP Formulations of the Power-Based Unit Commitment Problem

This paper provides the convex hull description for the basic operation of slow- and quick-start units in power-based unit commitment (UC) problems. The basic operating constraints that are modeled for both types of units are: 1) generation limits and 2) minimum up and down times. Apart from this, the startup and shutdown processes are also … Read more

A Tight MIP Formulation of the Unit Commitment Problem with Start-up and Shut-down Constraints

This paper provides the convex hull description for the following basic operating constraints of a single power generation unit in Unit Commitment (UC) problems: 1) generation limits, 2) startup and shutdown capabilities, and 3) minimum up and down times. Although the model does not consider some crucial constraints, such as ramping, the proposed constraints can … Read more