A pseudo-polynomial size formulation for 2-stage two-dimensional knapsack problems

Two dimensional cutting problems are about obtaining a set of rectangular items from a set of rectangular stock pieces and are of great relevance in industry, whenever a sheet of wood, metal or other material has to be cut. In this paper, we consider the 2-stage two-dimensional knapsack (2TDK) problem which requires finding the maximum … Read more

Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization

In recent years, decision rules have been established as the preferred solution method for addressing computationally demanding, multistage adaptive optimization problems. Despite their success, existing decision rules (a) are typically constrained by their a priori design and (b) do not incorporate in their modeling adaptive binary decisions. To address these problems, we first derive the … Read more

Analysis of MILP Techniques for the Pooling Problem

The $pq$-relaxation for the pooling problem can be constructed by applying McCormick envelopes for each of the bilinear terms appearing in the so-called $pq$-formulation of the pooling problem. This relaxation can be strengthened by using piecewise-linear functions that over- and under-estimate each bilinear term. The resulting relaxation can be written as a mixed integer linear … Read more

REDUCTION OF TWO-STAGE PROBABILISTIC OPTIMIZATION PROBLEMS WITH DISCRETE DISTRIBUTION OF RANDOM DATA TO MIXED INTEGER PROGRAMMING PROBLEMS

We consider models of two-stage stochastic programming with a quantile second stage criterion and optimization models with a chance constraint on the second stage objective function values. Such models allow to formalize requirements to reliability and safety of the system under consideration, and to optimize the system in extreme conditions. We suggest a method of … Read more

On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs

We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type~2 triangle (resp. Type~3 triangle; quadrilateral) inequalities, are all within a … Read more

On the Augmented Lagrangian Dual for Integer Programming

We consider the augmented Lagrangian dual for integer programming, and provide a primal characterization of the resulting bound. As a corollary, we obtain proof that the augmented Lagrangian is a strong dual for integer programming. We are able to show that the penalty parameter applied to the augmented Lagrangian term may be placed at a … Read more

Branch-and-Cut for Complementarity-Constrained Optimization

We report and analyze the results of our computational testing of branch-and-cut for the complementarity-constrained optimization problem (CCOP). Besides the MIP cuts commonly present in commercial optimization software, we used inequalities that explore complementarity constraints. To do so, we generalized two families of cuts proposed earlier by de Farias, Johnson, and Nemhauser that had never … Read more

Efficient Heuristic Algorithms for Maximum Utility Product Pricing Problems

We propose improvements to some of the best heuristic algorithms for optimal product pricing problem originally designed by Dobson and Kalish in the late 1980’s and in the early 1990’s. Our improvements are based on a detailed study of a fundamental decoupling structure of the underlying mixed integer programming (MIP) problem and on incorporating more … Read more

On parallelizing dual decomposition in stochastic integer programming

For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Car\o{}e and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of the \textit{master} program by using structure-exploiting interior-point solvers. Our results demonstrate the potential … Read more

Semi-continuous network flow problems

We consider semi-continuous network flow problems, that is, a class of network flow problems where some of the variables are restricted to be semi-continuous. We introduce the semi-continuous inflow set with variable upper bounds as a relaxation of general semi-continuous network flow problems. Two particular cases of this set are considered, for which we present … Read more