Convergence rates for an inertial algorithm of gradient type associated to a smooth nonconvex minimization

We investigate an inertial algorithm of gradient type in connection with the minimization of a nonconvex differentiable function. The algorithm is formulated in the spirit of Nesterov’s accelerated convex gradient method. We show that the generated sequences converge to a critical point of the objective function, if a regularization of the objective function satis es the … Read more

Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants

Robust PCA has drawn significant attention in the last decade due to its success in numerous application domains, ranging from bio-informatics, statistics, and machine learning to image and video processing in computer vision. Robust PCA and its variants such as sparse PCA and stable PCA can be formulated as optimization problems with exploitable special structures. … Read more

Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization

Recent years have witnessed a surge of interest in parallel and distributed optimization methods for large-scale systems. In particular, nonconvex large-scale optimization problems have found a wide range of applications in several engineering fields. The design and the analysis of such complex, large-scale, systems pose several challenges and call for the development of new optimization … Read more

A second order dynamical approach with variable damping to nonconvex smooth minimization

We investigate a second order dynamical system with variable damping in connection with the minimization of a nonconvex differentiable function. The dynamical system is formulated in the spirit of the differential equation which models Nesterov’s accelerated convex gradient method. We show that the generated trajectory converges to a critical point, if a regularization of the … Read more

A comparison of methods for traversing non-convex regions in optimization problems

This paper considers again the well-known problem of dealing with non-convex regions during the minimization of a nonlinear function F(x) by Newton-like methods. The proposal made here involves a curvilinear search along an approximation to the continuous steepest descent path defined by the solution of the ODE dx/dt = -grad F(x). The algorithm we develop … Read more

Strong Convex Nonlinear Relaxations of the Pooling Problem

We investigate new convex relaxations for the pooling problem, a classic nonconvex production planning problem in which input materials are mixed in intermediate pools, with the outputs of these pools further mixed to make output products meeting given attribute percentage requirements. Our relaxations are derived by considering a set which arises from the formulation by … Read more

Inexact Successive Quadratic Approximation for Regularized Optimization

Successive quadratic approximations, or second-order proximal methods, are useful for minimizing functions that are a sum of a smooth part and a convex, possibly nonsmooth part that promotes regularization. Most analyses of iteration complexity focus on the special case of proximal gradient method, or accelerated variants thereof. There have been only a few studies of … Read more

A Branch-and-Bound based Algorithm for Nonconvex Multiobjective Optimization

A new branch-and-bound based algorithm for smooth nonconvex multiobjective optimization problems with convex constraints is presented. The algorithm computes an $(\varepsilon,\delta)$-approximation of all globally optimal solutions. We introduce the algorithm which uses selection rules, discarding and termination tests. The discarding tests are the most important aspect, as they examine in different ways whether a box … Read more

ADMM for Multiaffine Constrained Optimization

We propose an expansion of the scope of the alternating direction method of multipliers (ADMM). Specifically, we show that ADMM, when employed to solve problems with multiaffine constraints that satisfy certain easily verifiable assumptions, converges to the set of constrained stationary points if the penalty parameter in the augmented Lagrangian is sufficiently large. When the … Read more

Concise Complexity Analyses for Trust-Region Methods

Concise complexity analyses are presented for simple trust region algorithms for solving unconstrained optimization problems. In contrast to a traditional trust region algorithm, the algorithms considered in this paper require certain control over the choice of trust region radius after any successful iteration. The analyses highlight the essential algorithm components required to obtain certain complexity … Read more