A note on the squared slack variables technique for nonlinear optimization

In constrained nonlinear optimization, the squared slack variables can be used to transform a problem with inequality constraints into a problem containing only equality constraints. This reformulation is usually not considered in the modern literature, mainly because of possible numerical instabilities. However, this argument only concerns the development of algorithms, and nothing stops us in … Read more

A Multi-Objective approach to visualize proportions and similarities between individuals by rectangular maps

In this paper we address the problem of visualizing the proportions and the similarities attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one individual, their areas reflect the proportions, and the closeness between … Read more

Polynomial SDP Cuts for Optimal Power Flow

The use of convex relaxations has lately gained considerable interest in Power Systems. These relaxations play a major role in providing quality guarantees for non-convex optimization problems. For the Optimal Power Flow (OPF) prob- lem, the semidefinite programming (SDP) relaxation is known to produce tight lower bounds. Unfortunately, SDP solvers still suffer from a lack … Read more

Sequential equality-constrained optimization for nonlinear programming

A new method is proposed for solving optimization problems with equality constraints and bounds on the variables. In the spirit of Sequential Quadratic Programming and Sequential Linearly-Constrained Programming, the new method approximately solves, at each iteration, an equality-constrained optimization problem. The bound constraints are handled in outer iterations by means of an Augmented Lagrangian scheme. … Read more

Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear programming

In this work we present an algorithm for solving constrained optimization problems that does not make explicit use of the objective function derivatives. The algorithm mixes an inexact restoration framework with filter techniques, where the forbidden regions can be given by the flat or slanting filter rule. Each iteration is decomposed in two independent phases: … Read more

A second-order sequential optimality condition associated to the convergence of optimization algorithms

Sequential optimality conditions have recently played an important role on the analysis of the global convergence of optimization algorithms towards first-order stationary points and justifying their stopping criteria. In this paper we introduce the first sequential optimality condition that takes into account second-order information. We also present a companion constraint qualification that is less stringent … Read more

UFO 2014 – Interactive System for Universal Functional Optimization

This report contains a description of the interactive system for universal functional optimization UFO, version 2014. This version contains interfaces to the MATLAB and SCILAB graphics environments. CitationResearch Report V1218-14, Institute of Computer Science, Czech Academy of Sciences, Prague 2014. ArticleDownload View PDF

On the Performance of SQP Methods for Nonlinear Optimization

This paper concerns some practical issues associated with the formulation of sequential quadratic programming (SQP) methods for large-scale nonlinear optimization. SQP methods find an approximate solution of a sequence of quadratic programming (QP) subproblems in which a quadratic model of the objective function is minimized subject to the linearized constraints. Extensive numerical results are given … Read more

A Filter SQP Method: Local Convergence and Numerical Results

The work by Gould, Loh, and Robinson [“A filter method with unified step computation for nonlinear optimization”, SIAM J. Optim., 24 (2014), pp. 175–209] established global convergence of a new filter line search method for finding local first-order solutions to nonlinear and nonconvex constrained optimization problems. A key contribution of that work was that the … Read more

Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs

In view of solving nonsmooth and nonconvex problems involving complex constraints (like standard NLP problems), we study general maximization-minimization procedures produced by families of strongly convex sub-problems. Using techniques from semi-algebraic geometry and variational analysis –in particular Lojasiewicz inequality– we establish the convergence of sequences generated by this type of schemes to critical points. The … Read more