An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a filter line-search algorithm that does not require inertia information about the linear system to ensure global convergence. The proposed approach performs curvature tests along the search step to ensure descent. This feature permits more modularity in the linear algebra, enabling the use of a wider range of iterative and decomposition strategies. We … Read more

A collision detection approach for maximizing the material utilization

We introduce a new method for a task of maximal material utilization, which is is to fit a flexible, scalable three-dimensional body into another aiming for maximal volume whereas position and shape may vary. The difficulty arises from the containment constraint which is not easy to handle numerically. We use a collision detection method to … Read more

Global Optimization via Slack Variables

This paper presents a method for finding global optima to constrained nonlinear programs via slack variables. The method only applies if all functions involved are of class C1 but without any further qualification on the types of constraints allowed; it proceeds by reformulating the given program into a bi-objective program that is then solved for … Read more

On Global Optimization

This paper presents a relatively “unfettered” method for finding global optima to constrained nonlinear programs. The method reformulates the given program into a bi-objective mixed-integer program that is then solved for the Nash equilibrium. A numerical example (whose solution provides a new benchmark against which other algorithms may be assessed) is included to illustrate the … Read more

A Globally Convergent Stabilized SQP Method: Superlinear Convergence

Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):1983–2010, 2013). The method is … Read more

Assessing the reliability of general-purpose Inexact Restoration methods

Inexact Restoration methods have been proved to be effective to solve constrained optimization problems in which some structure of the feasible set induces a natural way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways of dealing with minimization over tangent approximations of the feasible set are also employed. A recent paper [N. Banihashemi … Read more

SQP Methods for Parametric Nonlinear Optimization

Sequential quadratic programming (SQP) methods are known to be effi- cient for solving a series of related nonlinear optimization problems because of desirable hot and warm start properties–a solution for one problem is a good estimate of the solution of the next. However, standard SQP solvers contain elements to enforce global convergence that can interfere … Read more

A Regularized SQP Method with Convergence to Second-Order Optimal Points

Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and stabilized SQP methods. The method … Read more

An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts

A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full matrices for all but the first problem … Read more

Convex Quadratic Relaxations for Mixed-Integer Nonlinear Programs in Power Systems

This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semi-definite … Read more