SDPARA : SemiDefinite Programming Algorithm PARAllel Version

Abstract: The SDPA (SemiDefinite Programming Algorithm) is known as efficient computer software based on primal-dual interior-point method for solving SDPs (Semidefinite Programs). In many applications, however, some SDPs become larger and larger, too large for the SDPA to solve on a single processor. In execution of the SDPA applied to large scale SDPs, the computation … Read more

Computing Mountain Passes

We propose the elastic string algorithm for computing mountain passes in finite-dimensional problems. We analyze the convergence properties and numerical performance of this algorithm for benchmark problems in chemistry and discretizations of infinite-dimensional variational problems. We show that any limit point of the elastic string algorithm is a path that crosses a critical point at … Read more

Implementation and Evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0

The SDPA (SemiDefinite Programming Algorithm) is a software package for solving general SDPs(SemiDefinite Programs). It is written in C++ with the help of {\it LAPACK} for numerical linear algebra for dense matrix computation. The purpose of this paper is to present a brief description of the latest version of the SDPA and its high performance … Read more

Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems

There is a large number of implementational choices to be made for the primal-dual interior point method in the context of mixed semidefinite and second order cone optimization. This paper presents such implementational issues in a unified framework, and compares the choices made by different research groups. This is also the first paper to provide … Read more

The NEOS Server for Optimization: Version 4 and Beyond

We describe developments associated with Version 4 of the NEOS Server and note that these developments have led to an exponential growth in the number of job submissions. We also provide an overview of some of the research and educational uses for the NEOS Server and discuss future research challenges. Citation Preprint ANL/MCS-P947-0202, Argonne National … Read more

Using Heuristics to Solve the Dedicated Aircraft Recovery Problem

The Dedicated Aircraft Recovery Problem (DARP) involves decisions concerning aircraft to flight assignments in situations where unforeseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The dedicated aircraft recovery problem aims to recover these flight schedules through a series of reassignments of aircraft to flights, delaying of flights and cancellations … Read more

Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system

In the literature, thermal insulation systems with a fixed number of heat intercepts have been optimized with respect to intercept locations and temperatures. The number of intercepts and the types of insulators that surround them were chosen by parametric studies. This was because the optimization methods used could not treat such categorical variables. Discrete optimization … Read more

Convex optimization problems involving finite autocorrelation sequences

We discuss convex optimization problems where some of the variables are constrained to be finite autocorrelation sequences. Problems of this form arise in signal processing and communications, and we describe applications in filter design and system identification. Autocorrelation constraints in optimization problems are often approximated by sampling the corresponding power spectral density, which results in … Read more

Handling Nonnegative Constraints in Spectral Estimation

We consider convex optimization problems with the constraint that the variables form a finite autocorrelation sequence, or equivalently, that the corresponding power spectral density is nonnegative. This constraint is often approximated by sampling the power spectral density, which results in a set of linear inequalities. It can also be cast as a linear matrix inequality … Read more