Application of the Moment-SOS Approach to Global Optimization of the OPF Problem

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its nonconvexity. A convex relaxation in the form of semidefinite programming (SDP) has attracted much attention lately as it yields a global solution in several practical cases. However, it does not in all cases, and such cases have been documented … Read more

Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained QPs

We study non-convex quadratic minimization problems under (possibly non-convex) quadratic and linear constraints, and characterize both Lagrangian and Semi-Lagrangian dual bounds in terms of conic optimization. While the Lagrangian dual is equivalent to the SDP relaxation (which has been known for quite a while, although the presented form, incorporating explicitly linear constraints, seems to be … Read more

Narrowing the difficulty gap for the Celis-Dennis-Tapia problem

We study the {\em Celis-Dennis-Tapia (CDT) problem}: minimize a non-convex quadratic function over the intersection of two ellipsoids. In contrast to the well-studied trust region problem where the feasible set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective in this paper is to narrow the difficulty gap that … Read more

Completely Positive Reformulations for Polynomial Optimization

Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well stablished body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of … Read more

Extension of Completely Positive Cone Relaxation to Polynomial Optimization

We propose the moment cone relaxation for a class of polynomial optimization problems (POPs) to extend the results on the completely positive cone programming relaxation for the quadratic optimization (QOP) model by Arima, Kim and Kojima. The moment cone relaxation is constructed to take advantage of sparsity of the POPs, so that efficient numerical methods … Read more

Upper bounds for packings of spheres of several radii

We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We … Read more

A Complete Characterization of the Gap between Convexity and SOS-Convexity

Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials via the definition of convexity, its first order characterization, and its second order characterization are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming … Read more

An extension of the elimination method for a sparse SOS polynomial

We propose a method to reduce the sizes of SDP relaxation problems for a given polynomial optimization problem (POP). This method is an extension of the elimination method for a sparse SOS polynomial in [Kojima et al., Mathematical Programming] and exploits sparsity of polynomials involved in a given POP. In addition, we show that this … Read more

Welfare-Maximizing Correlated Equilibria using Kantorovich Polynomials with Sparsity

We propose an algorithm that computes the epsilon-correlated equilibria with global-optimal (i.e., maximum) expected social welfare for single stage polynomial games. We first derive an infinite-dimensional formulation of epsilon-correlated equilibria using Kantorovich polynomials and re-express it as a polynomial positivity constraint. In addition, we exploit polynomial sparsity to achieve a leaner problem formulation involving Sum-Of-Squares … Read more

A Feasible method for Optimization with Orthogonality Constraints

Minimization with orthogonality constraints (e.g., $X^\top X = I$) and/or spherical constraints (e.g., $\|x\|_2 = 1$) has wide applications in polynomial optimization, combinatorial optimization, eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit compressive sensing, matrix rank minimization, etc. These problems are difficult because the constraints are not only non-convex but numerically expensive to preserve during iterations. … Read more