Blessing of Massive Scale: Spatial Graphical Model Estimation with a Total Cardinality Constraint

We consider the problem of estimating high dimensional spatial graphical models with a total cardinality constraint (i.e., the l0-constraint). Though this problem is highly nonconvex, we show that its primal-dual gap diminishes linearly with the dimensionality and provide a convex geometry justification of this ‘blessing of massive scale’ phenomenon. Motivated by this result, we propose … Read more

Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization

In a recent paper we introduced a trust-region method with variable norms for unconstrained minimization and we proved standard asymptotic convergence results. Here we will show that, with a simple modification with respect to the sufficient descent condition and replacing the trust-region approach with a suitable cubic regularization, the complexity of this method for finding … Read more

Robust Optimal Control with Adjustable Uncertainty Sets

Robust control design for constrained uncertain systems is a well-studied topic. Given a known uncertainty set, the objective is to find a control policy that minimizes a given cost and satisfies the system’s constraints for all possible uncertainty realizations. In this paper, we extend the classical robust control setup by treating the uncertainty sets as … Read more

Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

A recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In this work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous … Read more

hBcnorm regularization algorithms for optimization over permutation matrices

Optimization problems over permutation matrices appear widely in facility layout, chip design, scheduling, pattern recognition, computer vision, graph matching, etc. Since this problem is NP-hard due to the combinatorial nature of permutation matrices, we relax the variable to be the more tractable doubly stochastic matrices and add an $L_p$-norm ($0 < p < 1$) regularization ... Read more

Ambiguous Joint Chance Constraints under Mean and Dispersion Information

We study joint chance constraints where the distribution of the uncertain parameters is only known to belong to an ambiguity set characterized by the mean and support of the uncertainties and by an upper bound on their dispersion. This setting gives rise to pessimistic (optimistic) ambiguous chance constraints, which require the corresponding classical chance constraints … Read more

Partial outer convexification for traffic light optimization in road networks

We consider the problem of computing optimal traffic light programs for urban road intersections using traffic flow conservation laws on networks. Based on a Partial Outer Convexification approach, which has been successfully applied in the area of mixed-integer optimal control for systems of ordinary or differential algebraic equations, we develop a computationally tractable two-stage solution … Read more

Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization

Sequential optimality conditions for constrained optimization are necessarily satisfied by local minimizers, independently of the fulfillment of constraint qualifications. These conditions support the employment of different stopping criteria for practical optimization algorithms. On the other hand, when an appropriate strict constraint qualification associated with some sequential optimality condition holds at a point that satisfies the … Read more

A Benders Decomposition Approach for the Charging Station Location Problem with Plug-in Hybrid Electric Vehicles

The flow refueling location problem (FRLP) locates $p$ stations in order to maximize the flow volume that can be accommodated in a road network respecting the range limitations of the vehicles. This paper introduces the charging station location problem with plug-in hybrid electric vehicles (CSLP-PHEV) as a generalization of the FRLP. We consider not only … Read more

Random Multi-Constraint Projection: Stochastic Gradient Methods for Convex Optimization with Many Constraints

Consider convex optimization problems subject to a large number of constraints. We focus on stochastic problems in which the objective takes the form of expected values and the feasible set is the intersection of a large number of convex sets. We propose a class of algorithms that perform both stochastic gradient descent and random feasibility … Read more