ADMM for Multiaffine Constrained Optimization

We propose an expansion of the scope of the alternating direction method of multipliers (ADMM). Specifically, we show that ADMM, when employed to solve problems with multiaffine constraints that satisfy certain easily verifiable assumptions, converges to the set of constrained stationary points if the penalty parameter in the augmented Lagrangian is sufficiently large. When the … Read more

A Riemannian Conjugate Gradient Algorithm with Implicit Vector Transport for Optimization on the Stiefel Manifold

In this paper, a reliable curvilinear search algorithm for solving optimization problems over the Stiefel manifold is presented. This method is inspired by the conjugate gradient method, with the purpose of obtain a new direction search that guarantees descent of the objective function in each iteration. The merit of this algorithm lies in the fact … Read more

Algorithms and Convergence Results of Projection Methods for Inconsistent Feasibility Problems: A Review

The convex feasibility problem (CFP) is to find a feasible point in the intersection of finitely many convex and closed sets. If the intersection is empty then the CFP is inconsistent and a feasible point does not exist. However, algorithmic research of inconsistent CFPs exists and is mainly focused on two directions. One is oriented … Read more

Cubic Regularization Method based on Mixed Factorizations for Unconstrained Minimization

Newton’s method for unconstrained optimization, subject to proper regularization or special trust-region procedures, finds first-order stationary points with precision $\varepsilon$ employing, at most, $O(\varepsilon^{-3/2})$ functional and derivative evaluations. However, the computer work per iteration of the best-known implementations may need several factorizations per iteration or may use rather expensive matrix decompositions. In this paper, we … Read more

Network Models for Multiobjective Discrete Optimization

This paper provides a novel framework for solving multiobjective discrete optimization problems with an arbitrary number of objectives. Our framework formulates these problems as network models, in that enumerating the Pareto frontier amounts to solving a multicriteria shortest path problem in an auxiliary network. We design tools and techniques for exploiting the network model in … Read more

Concise Complexity Analyses for Trust-Region Methods

Concise complexity analyses are presented for simple trust region algorithms for solving unconstrained optimization problems. In contrast to a traditional trust region algorithm, the algorithms considered in this paper require certain control over the choice of trust region radius after any successful iteration. The analyses highlight the essential algorithm components required to obtain certain complexity … Read more

Uniqueness of DRS as the 2 Operator Resolvent-Splitting and Impossibility of 3 Operator Resolvent-Splitting

Given the success of Douglas-Rachford splitting (DRS), it is natural to ask whether DRS can be generalized. Are there are other 2 operator splittings? Can DRS be generalized to 3 operators? This work presents the answers: no and no. In a certain sense, DRS is the unique 2 operator resolvent-splitting, and generalizing DRS to 3 … Read more

The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method

We address the robust vehicle routing problem with time windows (RVRPTW) under customer demand and travel time uncertainties. As presented thus far in the literature, robust counterparts of standard formulations have challenged general-purpose optimization solvers and specialized branch-and-cut methods. Hence, optimal solutions have been reported for small-scale instances only. Additionally, although the most successful methods … Read more

Generalization Bounds for Regularized Portfolio Selection with Market Side Information

Drawing on statistical learning theory, we derive out-of-sample and suboptimal guarantees about the investment strategy obtained from a regularized portfolio optimization model which attempts to exploit side information about the financial market in order to reach an optimal risk-return tradeoff. This side information might include for instance recent stock returns, volatility indexes, financial news indicators, … Read more

An exact algorithm to find non-dominated facets of Tri-Objective MILPs

Many problems in real life have more than one decision criterion, referred to as multi-objective optimization (MOO) problems, and the objective functions of these problems are conflicting in most cases. Hence, finding non-dominated solutions is very critical for decision making process. Tri-objective mixed-integer linear programs (TOMILP) are an important subclass of MOOs that are applicable … Read more