Proximal Approaches for Matrix Optimization Problems: Application to Robust Precision Matrix Estimation.

In recent years, there has been a growing interest in mathematical mod- els leading to the minimization, in a symmetric matrix space, of a Bregman di- vergence coupled with a regularization term. We address problems of this type within a general framework where the regularization term is split in two parts, one being a spectral … Read more

Combining Multi-Level Real-time Iterations of Nonlinear Model Predictive Control to Realize Squatting Motions on Leo

Today’s humanoid robots are complex mechanical systems with many degrees of freedom that are built to achieve locomotion skills comparable to humans. In order to synthesize whole-body motions, real-tme capable direct methods of optimal control are a subject of contemporary research. To this end, Nonlinear Model Predictive Control is the method of choice to realize … Read more

Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs

This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form f + h where f is a differentiable function whose gradient is Lipschitz continuous and h is a closed convex function with a bounded domain. … Read more

The first heuristic specifically for mixed-integer second-order cone optimization

Mixed-integer second-order cone optimization (MISOCO) has become very popular in the last decade. Various aspects of solving these problems in Branch and Conic Cut (BCC) algorithms have been studied in the literature. This study aims to fill a gap and provide a novel way to find feasible solutions early in the BCC algorithm. Such solutions … Read more

High-Level Interfaces for the Multiple Shooting Code for Optimal Control MUSCOD

The demand for model-based simulation and optimization solutions requires the availability of software frameworks that not only provide computational capabilities, but also help to ease the formulation and implementation of the respective optimal control problems. In this article, we present and discuss recent development efforts and applicable work flows using the example of MUSCOD, the … Read more

Proximal Alternating Penalty Algorithms for Nonsmooth Constrained Convex Optimization

We develop two new proximal alternating penalty algorithms to solve a wide range class of constrained convex optimization problems. Our approach mainly relies on a novel combination of the classical quadratic penalty, alternating, Nesterov’s acceleration, and homotopy techniques. The first algorithm is designed to solve generic and possibly nonsmooth constrained convex problems without requiring any … Read more

Douglas-Rachford Splitting for Pathological Convex Optimization

Despite the vast literature on DRS, there has been very little work analyzing their behavior under pathologies. Most analyses assume a primal solution exists, a dual solution exists, and strong duality holds. When these assumptions are not met, i.e., under pathologies, the theory often breaks down and the empirical performance may degrade significantly. In this … Read more

A Branch-and-Benders-Cut Algorithm for the Road Restoration Crew Scheduling and Routing Problem

Extreme events such as disasters cause partial or total disruption of basic services such as water, energy, communication and transportation. In particular, roads can be damaged or blocked by debris, thereby obstructing access to certain affected areas. Thus, restoration of the damaged roads is necessary to evacuate victims and distribute emergency commodities to relief centers … Read more

Non-stationary Douglas-Rachford and alternating direction method of multipliers: adaptive stepsizes and convergence

We revisit the classical Douglas-Rachford (DR) method for finding a zero of the sum of two maximal monotone operators. Since the practical performance of the DR method crucially depends on the stepsizes, we aim at developing an adaptive stepsize rule. To that end, we take a closer look at a linear case of the problem … Read more

CasADi – A software framework for nonlinear optimization and optimal control

We present CasADi, an open-source software framework for numerical optimization. CasADi is a general-purpose tool that can be used to model and solve optimization problems with a large degree of flexibility, larger than what is associated with popular algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo. Of special interest are problems constrained by … Read more