AN-SPS: Adaptive Sample Size Nonmonotone Line Search Spectral Projected Subgradient Method for Convex Constrained Optimization Problems

Article Download View AN-SPS: Adaptive Sample Size Nonmonotone Line Search Spectral Projected Subgradient Method for Convex Constrained Optimization Problems

A Hessian inversion-free exact second order method for distributed consensus optimization

We consider a standard distributed consensus optimization problem where a set of agents connected over an undirected network minimize the sum of their individual (local) strongly convex costs. Alternating Direction Method of Multipliers (ADMM) and Proximal Method of Multipliers (PMM) have been proved to be effective frameworks for design of exact distributed second order methods … Read more

Spectral Projected Subgradient Method for Nonsmooth Convex Optimization Problems

We consider constrained optimization problems with a nonsmooth objective function in the form of mathematical expectation. The Sample Average Approximation (SAA) is used to estimate the objective function and variable sample size strategy is employed. The proposed algorithm combines an SAA subgradient with the spectral coefficient in order to provide a suitable direction which improves … Read more

LSOS: Line-search Second-Order Stochastic optimization methods for nonconvex finite sums

We develop a line-search second-order algorithmic framework for minimizing finite sums. We do not make any convexity assumptions, but require the terms of the sum to be continuously differentiable and have Lipschitz-continuous gradients. The methods fitting into this framework combine line searches and suitably decaying step lengths. A key issue is a two-step sampling at … Read more

Minimizing Nonsmooth Convex Functions with Variable Accuracy

We consider unconstrained optimization problems with nonsmooth and convex objective function in the form of mathematical expectation. The proposed method approximates the objective function with a sample average function by using different sample size in each iteration. The sample size is chosen in an adaptive manner based on the Inexact Restoration. The method uses line … Read more

EFIX: Exact Fixed Point Methods for Distributed Optimization

We consider strongly convex distributed consensus optimization over connected networks. EFIX, the proposed method, is derived using quadratic penalty approach. In more detail, we use the standard reformulation – transforming the original problem into a constrained problem in a higher dimensional space – to define a sequence of suitable quadratic penalty subproblems with increasing penalty … Read more

Subsampled Inexact Newton methods for minimizing large sums of convex functions

This paper deals with the minimization of large sum of convex functions by Inexact Newton (IN) methods employing subsampled Hessian approximations. The Conjugate Gradient method is used to compute the inexact Newton step and global convergence is enforced by a nonmonotone line search procedure. The aim is to obtain methods with affordable costs and fast … Read more

Parallel stochastic line search methods with feedback for minimizing finite sums

We consider unconstrained minimization of a finite sum of $N$ continuously differentiable, not necessarily convex, cost functions. Several gradient-like (and more generally, line search) methods, where the full gradient (the sum of $N$ component costs’ gradients) at each iteration~$k$ is replaced with an inexpensive approximation based on a sub-sample~$\mathcal N_k$ of the component costs’ gradients, … Read more

Newton-like method with diagonal correction for distributed optimization

We consider distributed optimization problems where networked nodes cooperatively minimize the sum of their locally known convex costs. A popular class of methods to solve these problems are the distributed gradient methods, which are attractive due to their inexpensive iterations, but have a drawback of slow convergence rates. This motivates the incorporation of second-order information … Read more

Spectral projected gradient method for stochastic optimization

We consider the Spectral Projected Gradient method for solving constrained optimization problems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The … Read more