Extended Formulations for Column Constrained Orbitopes

In the literature, packing and partitioning orbitopes were discussed to handle symmetries that act on variable matrices in certain binary programs. In this paper, we extend this concept by restrictions on the number of 1-entries in each column. We develop extended formulations of the resulting polytopes and present numerical results that show their effect on … Read more

On the Size of Integer Programs with Bounded Coefficients or Sparse Constraints

Integer programming formulations describe optimization problems over a set of integer points. A fundamental problem is to determine the minimal size of such formulations, in particular, if the size of the coefficients or sparsity of the constraints is bounded. This article considers lower and upper bounds on these sizes both in the original and in … Read more

The SCIP Optimization Suite 4.0

The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving … Read more

Polytopes Associated with Symmetry Handling

This paper investigates a polyhedral approach to handle symmetries in mixed-binary programs. We study symretopes, i.e., the convex hulls of all binary vectors that are lexicographically maximal in their orbit with respect to the symmetry group. These polytopes turn out to be quite complex. For practical use, we therefore develop an integer programming formulation with … Read more

On the Structure of Linear Programs with Overlapping Cardinality Constraints

Cardinality constraints enforce an upper bound on the number of variables that can be nonzero. This article investigates linear programs with cardinality constraints that mutually overlap, i.e., share variables. We present the components of a branch-and-cut solution approach, including new branching rules that exploit the structure of the corresponding conflict hypergraph. We also investigate valid … Read more

A Framework for Solving Mixed-Integer Semidefinite Programs

Mixed-integer semidefinite programs arise in many applications and several problem-specific solution approaches have been studied recently. In this paper, we investigate a generic branch-and-bound framework for solving such problems. We first show that strict duality of the semidefinite relaxations is inherited to the subproblems. Then solver components like dual fixing, branching rules, and primal heuristics … Read more

Computing Restricted Isometry Constants via Mixed-Integer Semidefinite Programming

One of the fundamental tasks in compressed sensing is finding the sparsest solution to an underdetermined system of linear equations. It is well known that although this problem is NP-hard, under certain conditions it can be solved by using a linear program which minimizes the 1-norm. The restricted isometry property has been one of the … Read more

Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctions and Complementarity Constraints

In the early 1980s, Balas and Jeroslow presented monoidal disjunctive cuts exploiting the integrality of variables. This article investigates the relation of monoidal cut strengthening to other classes of cutting planes for general two-term disjunctions. We introduce a generalization of mixed-integer rounding cuts and show equivalence to monoidal disjunctive cuts. Moreover, we demonstrate the effectiveness … Read more

The SCIP Optimization Suite 3.2

The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic … Read more

GasLib – A Library of Gas Network Instances

The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances … Read more