Exploiting separability in large-scale linear support vector machine training

Linear support vector machine training can be represented as a large quadratic program. We present an efficient and numerically stable algorithm for this problem using interior point methods, which requires only O(n) operations per iteration. Through exploiting the separability of the Hessian, we provide a unified approach, from an optimization perspective, to 1-norm classification, 2-norm … Read more

Iterative Minimization Schemes for Solving the Single Source Localization Problem

We consider the problem of locating a single radiating source from several noisy measurements using a maximum likelihood (ML) criteria. The resulting optimization problem is nonconvex and nonsmooth and thus finding its global solution is in principal a hard task. Exploiting the special structure of the objective function, we introduce and analyze two iterative schemes … Read more

Nonlinear Matroid Optimization and Experimental Design

We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is … Read more

A Fast Algorithm For Image Deblurring with Total Variation Regularization

We propose and test a simple algorithmic framework for recovering images from blurry and noisy observations based on total variation (TV) regularization when a blurring point-spread function is given. Using a splitting technique, we construct an iterative procedure of alternately solving a pair of easy subproblems associated with an increasing sequence of penalty parameter values. … Read more

A Fixed-Point Continuation Method for l_1-Regularized Minimization with Applications to Compressed Sensing

We consider solving minimization problems with $\ell_1$-regularization: $$\min \|x\|_1 + \mu f(x),$$ particularly for $f(x) = \frac{1}{2}\|Ax-b\|_M^2$ where $A \in \R^{m \times n}$ with $m < n$. Our goal is to construct efficient and robust algorithms for solving large-scale problems with dense data, and our approach is based on two powerful algorithmic ideas, operator-splitting and ... Read more

Optimization for Simulation: LAD Accelerator

The goal of this paper is to address the problem of evaluating the performance of a system running under unknown values for its stochastic parameters. A new approach called LAD for Simulation, based on simulation and classification software, is presented. It uses a number of simulations with very few replications and records the mean value … Read more

Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems

Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared $\ell_2$) error term combined with a sparseness-inducing ($\ell_1$) regularization term.{\it Basis pursuit}, the {\it least absolute shrinkage and selection operator} (LASSO), … Read more

Smooth Optimization Approach for Covariance Selection

In this paper we study a smooth optimization approach for solving a class of non-smooth {\it strongly} concave maximization problems. In particular, we apply Nesterov’s smooth optimization technique \cite{Nest83-1,Nest05-1} to their dual counterparts that are smooth convex problems. It is shown that the resulting approach has $\cO(1/{\sqrt{\epsilon}})$ iteration complexity for finding an $\epsilon$-optimal solution to … Read more

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, … Read more

An iterative approach for cone complementarity problems for nonsmooth multibody dynamics

Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is … Read more