Efficient Convex Optimization for Linear MPC

Model predictive control (MPC) formulations with linear dynamics and quadratic objectives can be solved efficiently by using a primal-dual interior-point framework, with complexity proportional to the length of the horizon. An alternative, which is more able to exploit the similarity of the problems that are solved at each decision point of linear MPC, is to … Read more

Bootstrap Robust Prescriptive Analytics

We address the problem of prescribing an optimal decision in a framework where its cost depends on uncertain problem parameters $Y$ that need to be learned from data. Earlier work by Bertsimas and Kallus (2014) transforms classical machine learning methods that merely predict $Y$ from supervised training data $[(x_1, y_1), \dots, (x_n, y_n)]$ into prescriptive … Read more

Optimization of Stochastic Problems with Probability Functions via Differential Evolution

Chance constrained programming, quantile/Value-at-Risk (VaR) optimization and integral quantile / Conditional Value-at-Risk (CVaR) optimization problems as Stochastic Programming Problems with Probability Functions (SPP-PF) are one of the most widely studied optimization problems in recent years. As a rule real-life SPP-PF is nonsmooth nonconvex optimization problem with complex geometry of objective function. Moreover, often it cannot … Read more

Convergent Prediction-Correction-based ADMM for multi-block separable convex programming

The direct extension of the classic alternating direction method with multipliers (ADMMe) to the multi-block separable convex optimization problem is not necessarily convergent, though it often performs very well in practice. In order to preserve the numerical advantages of ADMMe and obtain convergence, many modified ADMM were proposed by correcting the output of ADMMe or … Read more

Nonoverlapping Domain Decomposition for Optimal Control Problems governed by Semilinear Models for Gas Flow in Networks

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order … Read more

Computational Aspects of Bayesian Solution Estimators in Stochastic Optimization

We study a class of stochastic programs where some of the elements in the objective function are random, and their probability distribution has unknown parameters. The goal is to find a good estimate for the optimal solution of the stochastic program using data sampled from the distribution of the random elements. We investigate two common … Read more

Weak Stability of $\ell_1hBcminimization Methods in Sparse Data Reconstruction

As one of the most plausible convex optimization methods for sparse data reconstruction, $\ell_1$-minimization plays a fundamental role in the development of sparse optimization theory. The stability of this method has been addressed in the literature under various assumptions such as restricted isometry property (RIP), null space property (NSP), and mutual coherence. In this paper, … Read more

A partial outer convexification approach to control transmission lines

In this paper we derive an efficient optimization approach to calculate optimal controls of electric transmission lines. These controls consist of time-dependent inflows and switches that temporarily disable single arcs or whole subgrids to reallocate the flow inside the system. The aim is then to find the best energy input in terms of boundary controls … Read more

Generalized Dual Dynamic Programming for Infinite Horizon Problems in Continuous State and Action Spaces

We describe a nonlinear generalization of dual dynamic programming theory and its application to value function estimation for deterministic control problems over continuous state and action (or input) spaces, in a discrete-time infinite horizon setting. We prove that the result of a one-stage policy evaluation can be used to produce nonlinear lower bounds on the … Read more

The Inmate Assignment and Scheduling Problem and its Application in the PA Department of Correction

The inmate assignment project, in close collaboration with the Pennsylvania Department of Corrections (PADoC), took five years from start to successful implementation. In this project, we developed the Inmate Assignment Decision Support System (IADSS), where the primary goal is simultaneous and system-wide optimal assignment of inmates to correctional institutions (CIs). We develop a novel hier- … Read more