Problem Formulations for Simulation-based Design Optimization using Statistical Surrogates and Direct Search

Typical challenges of simulation-based design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and … Read more

String-Averaging Expectation-Maximization for Maximum Likelihood Estimation in Emission Tomography

We study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called String-Averaging Expectation-Maximization (SAEM). In the String-Averaging algorithmic regime, the index set of all underlying equations is split into subsets, called “strings,” and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points … Read more

Feasibility-Seeking and Superiorization Algorithms Applied to Inverse Treatment Planning in Radiation Therapy

We apply the recently proposed superiorization methodology (SM) to the inverse planning problem in radiation therapy. The inverse planning problem is represented here as a constrained minimization problem of the total variation (TV) of the intensity vector over a large system of linear two-sided inequalities. The SM can be viewed conceptually as lying between feasibility-seeking … Read more

Sparsity Optimization in Design of Multidimensional Filter Networks

Filter networks are used as a powerful tool aimed at reducing the image processing time and maintaining high image quality. They are composed of sparse sub-filters whose high sparsity ensures fast image processing. The filter network design is related to solving a sparse optimization problem where a cardinality constraint bounds above the sparsity level. In … Read more

A Stochastic Quasi-Newton Method for Large-Scale Optimization

Abstract The question of how to incorporate curvature information in stochastic approximation methods is challenging. The direct application of classical quasi- Newton updating techniques for deterministic optimization leads to noisy curvature estimates that have harmful effects on the robustness of the iteration. In this paper, we propose a stochastic quasi-Newton method that is efficient, robust … Read more

Alternating direction method of multipliers for sparse zero-variance discriminant analysis and principal component analysis

We consider the task of classification in the high-dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose sparse zero-variance discriminant analysis (SZVD) as a method for simultaneouslyperforming linear discriminant analysis and feature selection on high-dimensional data. This method combines … Read more

Subset Selection by Mallows’ Cp: A Mixed Integer Programming Approach

This paper concerns a method of selecting the best subset of explanatory variables for a linear regression model. Employing Mallows’ C_p as a goodness-of-fit measure, we formulate the subset selection problem as a mixed integer quadratic programming problem. Computational results demonstrate that our method provides the best subset of variables in a few seconds when … Read more

Models and Solution Techniques for Production Planning Problems with Increasing Byproducts

We consider a production planning problem where the production process creates a mixture of desirable products and undesirable byproducts. In this production process, at any point in time the fraction of the mixture that is an undesirable byproduct increases monotonically as a function of the cumulative mixture production up to that time. The mathematical formulation … Read more

Generalized Gauss Inequalities via Semidefinite Programming

A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we … Read more

Directional Sensor Control: Heuristic Approaches

We study the problem of controlling multiple 2-D directional sensors while maximizing an objective function based on the information gain corresponding to multiple target locations. We assume a joint prior Gaussian distribution for the target locations. A sensor generates a (noisy) measurement of a target only if the target lies within the field-of-view of the … Read more