Dimensionality Reduction in Bilevel Linear Programming

We consider bilevel programs that involve a leader, who first commits to a mixed-integer decision, and a follower, who observes this decision and then responds rationally by solving a linear program (LP). Standard approaches often reformulate these bilevel optimization problems as single-level mixed-integer programs by exploiting the follower’s LP optimality conditions. These reformulations introduce either … Read more

Robust combinatorial optimization problems under locally budgeted interdiction uncertainty against the objective function and covering constraints

Recently robust combinatorial optimization problems with budgeted interdiction uncertainty affecting cardinality-based constraints or objective were considered by presenting, comparing and experimenting with compact formulations. In this paper we present a compact formulation for the case in which locally budgeted interdiction uncertainty affects the objective function and covering constraints simultaneously. ArticleDownload View PDF

Supermodularity, Curvature, and Convex Relaxations in a Class of Quadratic Binary Optimization Problems

We study the combinatorial structure of a quadratic set function $F(S)$ arising from a class of binary optimization models within the family of undesirable facility location problems. Despite strong empirical evidence of nested optimal solutions in previously studied real-world instances, we show that $F(S)$ is, in general, neither submodular nor supermodular. To quantify deviation from … Read more

Column Generation for Generalized Min-Cost Flows with Losses

The generalized flow problem deals with flows through a network with losses or gains along the arcs. Motivated by energy networks, this paper concentrates on the case with losses along cycles. Such networks can become extremely large, mostly because they are considered over large time horizons. We therefore develop a column generation approach for a … Read more

A Combinatorial Branch-and-Bound Algorithm for the Capacitated Facility Location Problem under Strict Customer Preferences

This work proposes a combinatorial branch-and-bound (B&B) algorithm for the capacitated facility location problem under strict customer preferences (CFLP-SCP). We use combinatorial insights into the problem structure to do preprocessing, model branching implications, enforce feasibility or prove infeasibility in each node, select variables and derive primal and dual bounds in each node of the B&B … Read more

Machine Learning Algorithms for Assisting Solvers for Constraint Satisfaction Problems

This survey proposes a unifying conceptual framework and taxonomy that systematically integrates Machine Learning (ML) and Reinforcement Learning (RL) with classical paradigms for Constraint Satisfaction and Boolean Satisfiability solving. Unlike prior reviews that focus on individual applications, we organize the literature around solver architecture, linking each major phase—constraint propagation, heuristic decision-making, conflict analysis, and meta-level … Read more

Branch-and-Cut for Computing Approximate Equilibria of Mixed-Integer Generalized Nash Games

Generalized Nash equilibrium problems with mixed-integer variables constitute an important class of games in which each player solves a mixed-integer optimization problem, where both the objective and the feasible set is parameterized by the rivals’ strategies. However, such games are known for failing to admit exact equilibria and also the assumption of all players being … Read more

Improving Directions in Mixed Integer Bilevel Linear Optimization

We consider the central role of improving directions in solution methods for mixed integer bilevel linear optimization problems (MIBLPs). Current state-of-the-art methods for solving MIBLPs employ the branch-and-cut framework originally developed for solving mixed integer linear optimization problems. This approach relies on oracles for two kinds of subproblems: those for checking whether a candidate pair … Read more

Data-Driven Optimization for Meal Delivery: A Reinforcement Learning Approach for Order-Courier Assignment and Routing at Meituan

The rapid growth of online meal delivery has introduced complex logistical challenges, where platforms must dynamically assign orders to couriers while accounting for demand uncertainty, courier autonomy, and service efficiency. Traditional dispatching methods, often focused on short-term cost minimization, fail to capture the long-term implications of assignment decisions on system-wide performance. This paper presents a … Read more

Political districting to maximize whole counties

We consider a fundamental question in political districting: How many counties can be kept whole (i.e., not split across multiple districts), while satisfying basic criteria like contiguity and population balance? To answer this question, we propose integer programming techniques based on combinatorial Benders decomposition. The main problem decides which counties to keep whole, and the … Read more