Algorithms for the Clique Problem with Multiple-Choice Constraints under a Series-Parallel Dependency Graph

The clique problem with multiple-choice constraints (CPMC), i.e. the problem of finding a k-clique in a k-partite graph with known partition, occurs as a substructure in many real-world applications, in particular scheduling and railway timetabling. Although CPMC is NP-complete in general, it is known to be solvable in polynomial time when the so-called dependency graph … Read more

On the generalized $\varthetahBcnumber and related problems for highly symmetric graphs

This paper is an in-depth analysis of the generalized $\vartheta$-number of a graph. The generalized $\vartheta$-number, $\vartheta_k(G)$, serves as a bound for both the $k$-multichromatic number of a graph and the maximum $k$-colorable subgraph problem. We present various properties of $\vartheta_k(G)$, such as that the series $(\vartheta_k(G))_k$ is increasing and bounded above by the order … Read more

On Recognizing Staircase Compatibility

For the problem to find an m-clique in an m-partite graph, staircase compatibility has recently been introduced as a polynomial-time solvable special case. It is a property of a graph together with an m-partition of the vertex set and total orders on each subset of the partition. In optimization problems involving m-cliques in m-partite graphs … Read more

ASTS Orientations on Undirected Graphs: Structural analysis and enumeration

All feasible flows in potential-driven networks induce an orientation on the undirected graph underlying the network. Clearly, these orientations must satisfy two conditions: they are acyclic and there are no “dead ends” in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and … Read more

Energy-Efficient Timetabling in a German Underground System

Timetabling of railway traffic and other modes of transport is among the most prominent applications of discrete optimization in practice. However, it has only been recently that the connection between timetabling and energy consumption has been studied more extensively. In our joint project VAG Verkehrs-Aktiengesellschaft, the transit authority and operator of underground transport in the … Read more

Computational study of a branching algorithm for the maximum k-cut problem

This work considers the graph partitioning problem known as maximum k-cut. It focuses on investigating features of a branch-and-bound method to efficiently obtain global solutions. An exhaustive experimental study is carried out for two main components of a branch-and-bound algorithm: computing bounds and branching strategies. In particular, we propose the use of a variable neighborhood … Read more

Branch-and-cut-and-price for the Cardinality-constrained Multi-cycle Problem in Kidney Exchange

The establishment of kidney exchange programs has dramatically improved rates for kidney transplants by matching donors to compatible patients who would otherwise fail to receive a kidney for transplant. Rather than simply swapping kidneys between two patient-donor pairs, having multiple patient-donors pairs simultaneously donate kidneys in a cyclic manner enables all participants to receive a … Read more

Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more

A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis introduced an extended formulation for the odd cycle inequalities of the stable set polytope in 1991, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there … Read more

Tight compact extended relaxations for nonconvex quadratic programming problems with box constraints

Cutting planes from the Boolean Quadric Polytope (BQP) can be used to reduce the optimality gap of the NP-hard nonconvex quadratic program with box constraints (BoxQP). It is known that all cuts of the Chvátal-Gomory closure of the BQP are A-odd cycle inequalities. We obtain a compact extended relaxation of all A-odd cycle inequalities, which … Read more