DeLuxing: Deep Lagrangian Underestimate Fixing for Column-Generation-Based Exact Methods

In this paper, we propose an innovative variable fixing strategy called deep Lagrangian underestimate fixing (DeLuxing). It is a highly effective approach for removing unnecessary variables in column-generation (CG)-based exact methods used to solve challenging discrete optimization problems commonly encountered in various industries, including vehicle routing problems (VRPs). DeLuxing employs a novel linear programming (LP) … Read more

Optimal Multi-Agent Pickup and Delivery Using Branch-and-Cut-and-Price

Given a set of agents and a set of pickup-delivery requests located on a two-dimensional map, the Multi-Agent Pickup and Delivery problem assigns the requests to the agents such that every agent moves from its start location to the locations of its assigned requests and finally to its end location without colliding into any other … Read more

Robust Optimization Under Controllable Uncertainty

Applications for optimization with uncertain data in practice often feature a possibility to reduce the uncertainty at a given query cost, e.g., by conducting measurements, surveys, or paying a third party in advance to limit the deviations. To model this type of applications we introduce the concept of optimization problems under controllable uncertainty (OCU). For … Read more

Delay-Resistant Robust Vehicle Routing with Heterogeneous Time Windows

We consider a robust variant of the vehicle routing problem with heterogeneous time windows (RVRP-HTW) with a focus on delay-resistant solutions. Here, customers have different availability time windows for every vehicle and must be provided with a preferably tight appointment window for the planned service. Different vehicles are a possibility to model different days on … Read more

Structured Pruning of Neural Networks for Constraints Learning

In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies … Read more

Recycling Valid Inequalities for Robust Combinatorial Optimization with Budget Uncertainty

Robust combinatorial optimization with budget uncertainty is one of the most popular approaches for integrating uncertainty into optimization problems. The existence of a compact reformulation for (mixed-integer) linear programs and positive complexity results give the impression that these problems are relatively easy to solve. However, the practical performance of the reformulation is quite poor when … Read more

Mind the \(\tilde{O}\): asymptotically better, but still impractical, quantum distributed algorithms

\(\) The CONGEST and CONGEST-CLIQUE models have been carefully studied to represent situations where the communication bandwidth between processors in a network is severely limited. Messages of only \( O(log(n)) \) bits of information each may be sent between processors in each round. The quantum versions of these models allow the processors instead to communicate … Read more

The set partitioning problem in a quantum context

The set partitioning problem and its decision variant (i.e., the exact cover problem) are combinatorial optimization problems that were historically crucial in the quantum optimization community. This problem is also employed in the main problem of the branch-and-price approach in many real-world optimization problems, including, but not limited to, redistricting and scheduling. Motivated by recent … Read more

On Integrality in Semidefinite Programming for Discrete Optimization

It is well-known that by adding integrality constraints to the semidefinite programming (SDP) relaxation of the max-cut problem, the resulting integer semidefinite program is an exact formulation of the problem. In this paper we show similar results for a wide variety of discrete optimization problems for which SDP relaxations have been derived. Based on a … Read more