A Proximal Gradient Method for Multi-objective Optimization Problems Using Bregman Functions

In this paper, a globally convergent proximal gradient method is developed for convex multi-objective optimization problems using Bregman distance. The proposed method is free from any kind of a priori chosen parameters or ordering information of objective functions. At every iteration of the proposed method, a subproblem is solved to find a descent direction. This … Read more

Integral Global Optimality Conditions and an Algorithm for Multiobjective Problems

In this work, we propose integral global optimality conditions for multiobjective problems not necessarily differentiable. The integral characterization, already known for single objective problems, are extended to multiobjective problems by weighted sum and Chebyshev weighted scalarizations. Using this last scalarization, we propose an algorithm for obtaining an approximation of the weak Pareto front whose effectiveness … Read more

Identifiability, the KL property in metric spaces, and subgradient curves

Identifiability, and the closely related idea of partial smoothness, unify classical active set methods and more general notions of solution structure. Diverse optimization algorithms generate iterates in discrete time that are eventually confined to identifiable sets. We present two fresh perspectives on identifiability. The first distills the notion to a simple metric property, applicable not … Read more

Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition

This work proposes a rapid algorithm, BM-Global, for nuclear-norm-regularized convex and low-rank matrix optimization problems. BM-Global efficiently decreases the objective value via low-cost steps leveraging the nonconvex but smooth Burer-Monteiro (BM) decomposition, while effectively escapes saddle points and spurious local minima ubiquitous in the BM form to obtain guarantees of fast convergence rates to the … Read more

Error Bound and Isocost Imply Linear Convergence of DCA-based Algorithms to D-stationarity

We consider a class of structured nonsmooth difference-of-convex minimization, which can be written as the difference of two convex functions possibly nonsmooth with the second one in the format of the maximum of a finite convex smooth functions. We propose two extrapolation proximal difference-of-convex based algorithms for potential acceleration to converge to a weak/standard d-stationary … Read more

Improved RIP-Based Bounds for Guaranteed Performance of Two Compressed Sensing Algorithms

Iterative hard thresholding (IHT) and compressive sampling matching pursuit (CoSaMP) are two mainstream compressed sensing algorithms using the hard thresholding operator. The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property (RIP) of sensing matrices. At present, the best known bound using RIP of order … Read more

Convergence Results for Primal-Dual Algorithms in the Presence of Adjoint Mismatch

Most optimization problems arising in imaging science involve high-dimensional linear operators and their adjoints. In the implementations of these operators, approximations may be introduced for various practical considerations (e.g., memory limitation, computational cost, convergence speed), leading to an adjoint mismatch. This occurs for the X-ray tomographic inverse problems found in Computed Tomography (CT), where the … Read more

A new sufficient condition for non-convex sparse recovery via weighted $\ell_r\!-\!\ell_1$ minimization

In this letter, we discuss the reconstruction of sparse signals from undersampled data, which belongs to the core content of compressed sensing. A new sufficient condition in terms of the restricted isometry constant (RIC) and restricted orthogonality constant (ROC) is first established for the performance guarantee of recently proposed non-convex weighted $\ell_r-\ell_1$ minimization in recovering … Read more

A Decomposition Algorithm for Two-Stage Stochastic Programs with Nonconvex Recourse

In this paper, we have studied a decomposition method for solving a class of nonconvex two-stage stochastic programs, where both the objective and constraints of the second-stage problem are nonlinearly parameterized by the first-stage variable. Due to the failure of the Clarke regularity of the resulting nonconvex recourse function, classical decomposition approaches such as Benders … Read more

The Null Space Property of the Weighted $\ell_r-\ell_1$ Minimization

The null space property (NSP), which relies merely on the null space of the sensing matrix column space, has drawn numerous interests in sparse signal recovery. This article studies NSP of the weighted $\ell_r-\ell_1$ minimization. Several versions of NSP of the weighted $\ell_r-\ell_1$ minimization including the weighted $\ell_r-\ell_1$ NSP, the weighted $\ell_r-\ell_1$ stable NSP, the … Read more