A genetic algorithm for a global optimization problem arising in the detection of gravitational waves

The detection of gravitational waves is a long-awaited event in modern physics and, to achieve this challenging goal, detectors with high sensitivity are being used or are under development. In order to extract gravitational signals, emitted by coalescing binary systems of compact objects (neutron stars and/or black holes), from noisy data obtained by interferometric detectors, … Read more

Global Optimization of Non-Linear Systems of Equations by Simulating the Flight of a Projectile in the Conformational Space

A new heuristic optimization algorithm is presented based on an analogy with the physical phenomenon of a projectile launched in a conformational space under the influence of a gravitational force. Its implementation simplicity and the option to enhance it with local search methods make it ideal for the optimization of non-linear systems of equations. The … Read more

A Framework for Optimization under Ambiguity

In this paper, single stage stochastic programs with ambiguous distributions for the involved random variables are considered. Though the true distribution is unknown, existence of a reference measure P enables the construction of non-parametric ambiguity sets as Kantorovich balls around P. The resulting robustified problems are infinite optimization problems and can therefore not be solved … Read more

Improved bounds for interatomic distance in Morse clusters

We improve the best known lower bounds on the distance between two points of a Morse cluster in $\mathbb{R}^3$, with $\rho \in [4.967,15]$. Our method is a generalization of the one applied to the Lennard-Jones potential in~\cite{Schac}, and it also leads to improvements of lower bounds for the energy of a Morse cluster. Some of … Read more

PSwarm: A Hybrid Solver for Linearly Constrained Global Derivative-Free Optimization

PSwarm was developed originally for the global optimization of functions without derivatives and where the variables are within upper and lower bounds. The underlying algorithm used is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the (optional) search step of coordinate search, … Read more

Strong Valid Inequalities for Orthogonal Disjunctions and Bilinear Covering Sets

In this paper, we develop a convexification tool that enables the construction of convex hulls for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques. A distinguishing feature of our technique is that, unlike most applications of disjunctive programming, it does not require the introduction of new variables in the relaxation. We develop and … Read more

An SDP-based divide-and-conquer algorithm for large scale noisy anchor-free graph realization

We propose the DISCO algorithm for graph realization in $\real^d$, given sparse and noisy short-range inter-vertex distances as inputs. Our divide-and-conquer algorithm works as follows. When a group has a sufficiently small number of vertices, the basis step is to form a graph realization by solving a semidefinite program. The recursive step is to break … Read more

Convex Relaxations of Non-Convex Mixed Integer Quadratically Constrained Programs: Extended Formulations

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, … Read more

Descent heuristics for unconstrained minimization

Semidefinite relaxations often provide excellent starting points for nonconvex problems with multiple local minimizers. This work aims to find a local minimizer within a certain neighborhood of the starting point and with a small objective value. Several approaches are motivated and compared with each other. CitationReport, Mathematisches Institut, Universitaet Duesseldorf, August 2008.ArticleDownload View PDF

Branching and bounds tightening techniques for non-convex MINLP

Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Programming (MINLP). Motivated by the demand for Open-Source solvers for real-world MINLP problems, we have developed a spatial Branch-and-Bound software package named COUENNE (Convex Over- and Under-ENvelopes for Nonlinear Estimation). In this paper, we present the structure of couenne and discuss in detail our … Read more