Branch-and-Cut for Mixed-Integer Generalized Nash Equilibrium Problems

Generalized Nash equilibrium problems with mixed-integer variables form an important class of games in which each player solves a mixed-integer optimization problem with respect to her own variables and the strategy space of each player depends on the strategies chosen by the rival players. In this work, we introduce a branch-and-cut algorithm to compute exact … Read more

On Multidimensonal Disjunctive Inequalities for Chance-Constrained Stochastic Problems with Finite Support

We consider mixed-integer linear chance-constrained problems for which the random vector that parameterizes the feasible region has finite support. Our key objective is to improve branch-and-bound or -cut approaches by introducing new types of valid inequalities that improve the dual bounds and, by this, the overall performance of such methods. We introduce so-called primal-dual as … Read more

Inverse Optimization via Learning Feasible Regions

We study inverse optimization (IO), where the goal is to use a parametric optimization program as the hypothesis class to infer relationships between input-decision pairs. Most of the literature focuses on learning only the objective function, as learning the constraint function (i.e., feasible regions) leads to nonconvex training programs. Motivated by this, we focus on … Read more

A surplus-maximizing two-sided multi-period non-convex ISO auction market

Since the inception of ISOs, Locational Marginal Prices (LMPs) alone were not market clearing or incentive compatible because an auction winner who offered its avoidable costs could lose money at the LMPs. ISOs used make-whole payments to ensure that market participants did not lose money. Make-whole payments were not public, creating transparency issues. Over time, … Read more

Optimization over Trained (and Sparse) Neural Networks: A Surrogate within a Surrogate

In constraint learning, we use a neural network as a surrogate for part of the constraints or of the objective function of an optimization model. However, the tractability of the resulting model is heavily influenced by the size of the neural network used as a surrogate. One way to obtain a more tractable surrogate is … Read more

Data-driven robust menu planning for food services: Reducing food waste by using leftovers

With food waste levels of about 30%, mostly caused by overproduction, reducing food waste poses an important challenge in the food service sector. As food is prepared in advance rather than on demand, there is a significant risk that meals or meal components remain uneaten. Flexible meal planning can promote the reuse of these leftovers … Read more

Global Optimization of Gas Transportation and Storage: Convex Hull Characterizations and Relaxations

Gas transportation and storage has become one of the most relevant and important optimization problems in energy systems. This problem inherently includes highly nonlinear and nonconvex aspects due to gas physics, and discrete aspects due to the control decisions of active network elements. Obtaining even locally optimal solutions for this problem presents significant mathematical and … Read more

An interactive optimization framework for incorporating a broader range of human feedback into stochastic multi-objective mixed integer linear programs

Interactive optimization leverages the strengths of optimization frameworks alongside the expertise of human users. Prior research in this area tends to either ask human users for the same type of information, or when varying information is requested, users must manually modify the optimization model directly. These limitations restrict the incorporation of wider human knowledge into … Read more

Globally Converging Algorithm for Multistage Stochastic Mixed-Integer Programs via Enhanced Lagrangian Cuts

This paper proposes a globally converging cutting-plane algorithm for solving multistage stochastic mixed-integer programs with general mixed-integer state variables. We demonstrate the generation process of Lagrangian cuts and show that Lagrangian cuts capture the convex envelope of value functions on a restricted region. To approximate nonconvex value functions to exactness, we propose to iteratively add … Read more

A 2-index Stage-based Formulation and a Construct-Merge-Solve & Adapt Algorithm for the Flying Sidekick Traveling Salesman Problem

In this work, we present the first 2-index stage-based formulation for the Flying Sidekick Traveling Salesman Problem (FSTSP). Additionally, we propose a Construct-Merge-Solve & Adapt (CMSA) algorithm designed to generate high-quality feasible solutions. Experimental results demonstrate that the proposed algorithm consistently produces good solutions in a fraction of the time required by state-of-the-art mixed-integer linear … Read more