A Polyhedral Study on Chance Constrained Program with Random Right-Hand Side

The essential structure of the mixed–integer programming formulation for chance–constrained program (CCP) is the intersection of multiple mixing sets with a $0-1$ knapsack. To improve our computational capacity on CCP, an underlying substructure, the (single) mixing set with a $0-1$ knapsack, has received substantial attentions recently. In this study, we consider a CCP problem with … Read more

Resource-constrained scheduling with non-constant capacity and non-regular activities

This work is inspired by very challenging issues arising in space logistics. The problem of scheduling a number of activities, in a given time elapse, optimizing the resource exploitation is discussed. The available resources are not constant, as well as the request, relative to each job. The mathematical aspects are illustrated, providing a time-indexed MILP … Read more

A Modeling-based Approach for Non-standard Packing Problems

This chapter examines the problem of packing tetris-like items, orthogonally, with the possibility of rotations, into a convex domain, in the presence of additional conditions. An MILP (Mixed Integer Linear Programming) and an MINLP (Mixed Integer Nonlinear Programming) models, previously studied by the author, are surveyed. An efficient formulation of the objective function, aimed at … Read more

A Traffic Model for the International Space Station: An MIP Approach

The International Space Station poses very challenging issues from the logistic point of view. Its on-orbit stay is to be significantly extended in the near future and ever increasing experimental activity in microgravity is expected, giving rise to a renewed interest in the related optimization aspects. A permanent logistic support is necessary to guarantee its … Read more

Integrating cut-and-solve and semi-Lagrangean based dual ascent for the single-source capacitated facility location problem

This paper describes how the cut-and-solve framework and semi-Lagrangean based dual ascent algorithms can be integrated in two natural ways in order to solve the single source capacitated facility location problem. The first uses the cut-and-solve framework both as a heuristic and as an exact solver for the semi-Lagrangean subproblems. The other uses a semi-Lagrangean … Read more

Toward computer-assisted discovery and automated proofs of cutting plane theorems

Using a metaprogramming technique and semialgebraic computations, we provide computer-based proofs for old and new cutting-plane theorems in Gomory–Johnson’s model of cut generating functions. Citation to be presented at ISCO 2016 Article Download View Toward computer-assisted discovery and automated proofs of cutting plane theorems

Penalty Alternating Direction Methods for Mixed-Integer Optimization: A New View on Feasibility Pumps

Feasibility pumps are highly effective primal heuristics for mixed-integer linear and nonlinear optimization. However, despite their success in practice there are only few works considering their theoretical properties. We show that feasibility pumps can be seen as alternating direction methods applied to special reformulations of the original problem, inheriting the convergence theory of these methods. … Read more

Low-Complexity Relaxations and Convex Hulls of Disjunctions on the Positive Semidefinite Cone and General Regular Cones

In this paper we analyze general two-term disjunctions on a regular cone $\K$ and derive a general form for a family of convex inequalities which are valid for the resulting nonconvex sets. Under mild technical assumptions, these inequalities collectively describe the closed convex hulls of these disjunctions, and if additional conditions are satisfied, a single … Read more

A Framework for Solving Mixed-Integer Semidefinite Programs

Mixed-integer semidefinite programs arise in many applications and several problem-specific solution approaches have been studied recently. In this paper, we investigate a generic branch-and-bound framework for solving such problems. We first show that strict duality of the semidefinite relaxations is inherited to the subproblems. Then solver components like dual fixing, branching rules, and primal heuristics … Read more

Computing Restricted Isometry Constants via Mixed-Integer Semidefinite Programming

One of the fundamental tasks in compressed sensing is finding the sparsest solution to an underdetermined system of linear equations. It is well known that although this problem is NP-hard, under certain conditions it can be solved by using a linear program which minimizes the 1-norm. The restricted isometry property has been one of the … Read more