An approximation algorithm for optimal piecewise linear approximations of bounded variable products

We investigate the optimal piecewise linear interpolation of the bivariate product xy over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the interpolation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using these as … Read more

Continuous Covering on Networks: Strong Mixed Integer Programming Formulations

Covering problems are well-studied in the domain of Operations Research, and, more specifically, in Location Science. When the location space is a network, the most frequent assumption is to consider the candidate facility locations, the points to be covered, or both, to be discrete sets. In this work, we study the set-covering location problem when … Read more

A Reciprocity Between Tree Ensemble Optimization and Multilinear Optimization

In this paper, we establish a polynomial equivalence between tree ensemble optimization and optimization of multilinear functions over the Cartesian product of simplices. We use this insight to derive new formulations for tree ensemble optimization problems and to obtain new convex hull results for multilinear polytopes. A computational experiment on multi-commodity transportation problems with costs … Read more

Efficient MIP Techniques for Computing the Relaxation Complexity

The relaxation complexity rc(X) of the set of integer points X contained in a polyhedron is the minimal number of inequalities needed to formulate a linear optimization problem over X without using auxiliary variables. Besides its relevance in integer programming, this concept has interpretations in aspects of social choice, symmetric cryptanalysis, and machine learning. We … Read more

Mixed-Integer Programming Techniques for the Minimum Sum-of-Squares Clustering Problem

The minimum sum-of-squares clustering problem is a very important problem in data mining and machine learning with very many applications in, e.g., medicine or social sciences. However, it is known to be NP-hard in all relevant cases and to be notoriously hard to be solved to global optimality in practice. In this paper, we develop … Read more

Integer programming column generation: Accelerating branch-and-price using a novel pricing scheme for finding high-quality solutions in set covering, packing, and partitioning problems

Large-neighbourhood search (LNS) heuristics are important mathematical programming techniques that search for primal feasible solutions by solving an auxiliary problem with a restricted feasible region. Extending such powerful generic LNS heuristics to the branch- and-price context is inherently challenging. The most prominent challenges arise from the fact that in branch-and-price algorithms, columns are generated with … Read more

An SDP Relaxation for the Sparse Integer Least Squares Problem

In this paper, we study the sparse integer least squares problem (SILS), an NP-hard variant of least squares with sparse {0, 1, -1}-vectors. We propose an l1-based SDP relaxation, and a randomized algorithm for SILS, which computes feasible solutions with high probability with an asymptotic approximation ratio 1/T^2 as long as the sparsity constant σ … Read more

Efficient Propagation Techniques for Handling Cyclic Symmetries in Binary Programs

The presence of symmetries of binary programs typically degrade the performance of branch-and-bound solvers. In this article, we derive efficient variable fixing algorithms to discard symmetric solutions from the search space based on propagation techniques for cyclic groups. Our algorithms come with the guarantee to find all possible variable fixings that can be derived from … Read more

The polytope of binary sequences with bounded variation

We investigate the problem of optimizing a linear objective function over the set of all binary vectors of length n with bounded variation, where the latter is defined as the number of pairs of consecutive entries with different value. This problem arises naturally in many applications, e.g., in unit commitment problems or when discretizing binary … Read more

A Novel Model for Transfer Synchronization in Transit Networks and a Lagrangian-based Heuristic Solution Method

To realize the benefits of network connectivity in transfer-based transit networks, it is critical to minimize transfer disutility for passengers by synchronizing timetables of intersecting routes. We propose a mixed-integer linear programming timetable synchronization model that incorporates new features, such as dwell time determination and vehicle capacity limit consideration, which have been largely overlooked in … Read more