Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more

Robust Price Optimization of Multiple Products under Interval Uncertainties

In this paper, we solve the multiple product price optimization problem under interval uncertainties of the price sensitivity parameters in the demand function. The objective of the price optimization problem is to maximize the overall revenue of the firm where the decision variables are the prices of the products supplied by the firm. We propose … Read more

Active-set identification with complexity guarantees of an almost cyclic 2-coordinate descent method with Armijo line search

In this paper, it is established finite active-set identification of an almost cyclic 2-coordinate descent method for problems with one linear coupling constraint and simple bounds. First, general active-set identification results are stated for non-convex objective functions. Then, under convexity and a quadratic growth condition (satisfied by any strongly convex function), complexity results on the … Read more

A Penalty-free Infeasible Approach for a Class of Nonsmooth Optimization Problems over the Stiefel Manifold

Transforming into an exact penalty function model with convex compact constraints yields efficient infeasible approaches for optimization problems with orthogonality constraints. For smooth and L21-norm regularized cases, these infeasible approaches adopt simple and orthonormalization-free updating schemes and show high efficiency in some numerical experiments. However, to avoid orthonormalization while enforcing the feasibility of the final … Read more

Controllable Transmission Networks UnderDemand Uncertainty with Modular FACTS

The transmission system operators (TSOs) are responsible to provide secure and efficient access to the transmission system for all stakeholders. This task is gradually getting challenging due to the demand growth, demand uncertainty, rapid changes in generation mix, and market policies. Traditionally, the TSOs try to maximize the technical performance of the transmission network via … Read more

A Framework of Inertial Alternating Direction Method of Multipliers for Non-Convex Non-Smooth Optimization

In this paper, we propose an algorithmic framework dubbed inertial alternating direction methods of multipliers (iADMM), for solving a class of nonconvex nonsmooth multiblock composite optimization problems with linear constraints. Our framework employs the general minimization-majorization (MM) principle to update each block of variables so as to not only unify the convergence analysis of previous … Read more

A General Framework for Optimal Control of Fractional Nonlinear Delay Systems by Wavelets

An iterative procedure to find the optimal solutions of general fractional nonlinear delay systems with quadraticperformance indices is introduced. The derivatives of state equations are understood in the Caputo sense. By presenting and applying a general framework, we use the Chebyshev wavelet method developed for fractional linear optimal control to convert fractional nonlinear optimal control … Read more

Beyond local optimality conditions: the case of maximizing a convex function

In this paper, we design an algorithm for maximizing a convex function over a convex feasible set. The algorithm consists of two phases: in phase 1 a feasible solution is obtained that is used as an initial starting point in phase 2. In the latter, a biconvex problem equivalent to the original problem is solved … Read more

How do exponential size solutions arise in semidefinite programming?

Semidefinite programs (SDPs) are some of the most popular and broadly applicable optimization problems to emerge in the last thirty years. A curious pathology of SDPs, illustrated by a classical example of Khachiyan, is that their solutions may need exponential space to even write down. Exponential size solutions are the main obstacle to solve a … Read more

A Matrix-Free Trust-Region Newton Algorithm for Convex-Constrained Optimization

We describe a matrix-free trust-region algorithm for solving convex-constrained optimization problems that uses the spectral projected gradient method to compute trial steps. To project onto the intersection of the feasible set and the trust region, we reformulate and solve the dual projection problem as a one-dimensional root finding problem. We demonstrate our algorithm’s performance on … Read more