Magnetic Resonance Tissue Density Estimation using Optimal SSFP Pulse-Sequence Design

In this paper, we formulate a nonlinear, nonconvex semidefinite optimization problem to select the steady-state free precession (SSFP) pulse-sequence design variables which maximize the contrast to noise ratio in tissue segmentation. The method could be applied to other pulse sequence types, arbitrary numbers of tissues, and numbers of images. To solve the problem we use … Read more

Computational experience with an interior point algorithm for large scale contact problems

In this paper we present an interior point method for large scale Signorini elastic contact problems. We study the case of an elastic body in frictionless contact with a rigid foundation. Primal and primal-dual algorithms are developed to solve the quadratic optimization problem arising in the variational formulation. Our computational study confirms the efficiency of … Read more

Finding optimal algorithmic parameters using a mesh adaptive direct search

The objectives of this paper are twofold; we first demonstrate the flexibility of the mesh adaptive direct search (MADS) in identifying locally optimal algorithmic parameters. This is done by devising a general framework for parameter tuning. The framework makes provision for surrogate objectives. Parameters are sought so as to minimize some measure of performance of … Read more

Lagrange Multipliers with Optimal Sensitivity Properties

We consider optimization problems with inequality and abstract set constraints, and we derive sensitivity properties of Lagrange multipliers under very weak conditions. In particular, we do not assume uniqueness of a Lagrange multiplier or continuity of the perturbation function. We show that the Lagrange multiplier of minimum norm defines the optimal rate of improvement of … Read more

The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm

Bundle adjustment using the Levenberg-Marquardt minimization algorithm is almost invariably used as the last step of every feature-based structure and motion estimation computer vision algorithm to obtain optimal 3D structure and viewing parameter estimates. However, due to the large number of unknowns contributing to the minimized reprojection error, a general purpose implementation of the Levenberg-Marquardt … Read more

Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity

Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) … Read more

Best approximation to common fixed points of a semigroup of nonexpansive operators

We study a sequential algorithm for finding the projection of a given point onto the common fixed points set of a semigroup of nonexpansive operators in Hilbert space. The convergence of such an algorithm was previously established only for finitely many nonexpansive operators. Algorithms of this kind have been applied to the best approximation and … Read more

On the Convergence of Successive Linear-Quadratic Programming Algorithms

The global convergence properties of a class of penalty methods for nonlinear programming are analyzed. These methods include successive linear programming approaches, and more specifically, the successive linear-quadratic programming approach presented by Byrd, Gould, Nocedal and Waltz (Math. Programming 100(1):27–48, 2004). Every iteration requires the solution of two trust-region subproblems involving piecewise linear and quadratic … Read more

The Q Method for Second-order Cone Programming

Based on the Q method for SDP, we develop the Q method for SOCP. A modified Q method is also introduced. Properties of the algorithms are discussed. Convergence proofs are given. Finally, we present numerical results. Citation AdvOl-Report#2004/15 McMaster University, Advanced Optimization Laboratory Article Download View The Q Method for Second-order Cone Programming

A New Conjugate Gradient Algorithm Incorporating Adaptive Ellipsoid Preconditioning

The conjugate gradient (CG) algorithm is well-known to have excellent theoretical properties for solving linear systems of equations $Ax = b$ where the $n\times n$ matrix $A$ is symmetric positive definite. However, for extremely ill-conditioned matrices the CG algorithm performs poorly in practice. In this paper, we discuss an adaptive preconditioning procedure which improves the … Read more