Sparsity issues in the computation of Jacobian Matrices

The knowledge of sparsity information plays an important role in efficient determination of sparse Jacobian matrices. In a recent work, we have proposed sparsity-exploiting substitution techniques to determine Jacobian matrices. In this paper, we take a closer look at the underlying combinatorial problem. We propose a column ordering heuristic to augment the “usable sparsity” in … Read more

A globally convergent primal-dual interior-point filter method for nonlinear programming

In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, … Read more

Space mapping: Models, sensitivities, and trust-regions methods

The goal of this paper is to organize some of the mathematical and algorithmic aspects of the recently proposed space-mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping (nonlinear) least-squares residual is … Read more

A Robust Primal-Dual Interior-Point Algorithm for Nonlinear Programs

We present a primal-dual interior-point algorithm of line-search type for nonlinear programs, which uses a new decomposition scheme of sequential quadratic programming. The algorithm can circumvent the convergence difficulties of some existing interior-point methods. Global convergence properties are derived without assuming regularity conditions. The penalty parameter rho in the merit function is updated automatically such … Read more

Constructing Approximations to the Efficient Set of Convex Quadratic Multiobjective Problems

In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, no single solution can adequately represent the whole set of optimal points. We propose a new efficient method for approximating the solution set of a convex quadratic multiobjective programming problem. The method is based on a warm-start interior point … Read more

NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more

A truncated SQP algorithm for solving nonconvex equality constrained optimization problems

An algorithm for solving equality constrained optimization problems is proposed. It can deal with nonconvex functions and uses a truncated conjugate algorithm for detecting nonconvexity. The algorithm ensures convergence from remote starting point by using line-search. Numerical experiments are reported, comparing the approach with the one implemented in the trust region codes ETR and Knitro. … Read more

An Analysis of the EM Algorithm andEntropy-Like Proximal Point Methods

The EM algorithm is a popular method for maximum likelihood estimation from incomplete data. This method may be viewed as a proximal point method for maximizing the log-likelhood function using an integral form of the Kullback-Leibler distance function. Motivated by this interpretation, we consider a proximal point method using an integral form of entropy-like distance … Read more

A Comparative Study of Large-Scale Nonlinear Optimization Algorithms

In recent years, much work has been done on implementing a variety of algorithms in nonlinear programming software. In this paper, we analyze the performance of several state-of-the-art optimization codes on large-scale nonlinear optimization problems. Extensive numerical results are presented on different classes of problems, and features of each code that make it efficient or … Read more