MatQapNB User Guide: A branch-and-bound program for QAPs in Matlab with the Newton-Bracketing method

MatQapNB is a MATLAB toolbox that implements a parallel branch-and-bound method using NewtBracket (the Newton bracketing method [4]) for its lower bounding procedure. It can solve small to medium scale Quadratic Assignment Problem (QAP) instances with dimension up to 30. MatQapNB was used in the numerical experiments on QAPs in the recent article “Solving challenging … Read more

SOS-SDP: an Exact Solver for Minimum Sum-of-Squares Clustering

The minimum sum-of-squares clustering problem (MSSC) consists in partitioning n observations into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. In this paper, we propose an exact algorithm for the MSSC problem based on the branch-and-bound technique. The lower bound is computed by … Read more

Cutting Plane Generation Through Sparse Principal Component Analysis

Quadratically-constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness has made them a cornerstone of methodological research for nonconvex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semidefinite programming (SDP) relaxation is typically employed, which provides strong … Read more

New notions of simultaneous diagonalizability of quadratic forms with applications to QCQPs

A set of quadratic forms is simultaneously diagonalizable via congruence (SDC) if there exists a basis under which each of the quadratic forms is diagonal. This property appears naturally when analyzing quadratically constrained quadratic programs (QCQPs) and has important implications in this context. This paper extends the reach of the SDC property by studying two … Read more

Supermodularity and valid inequalities for quadratic optimization with indicators

We study the minimization of a rank-one quadratic with indicators and show that the underlying set function obtained by projecting out the continuous variables is supermodular. Although supermodular minimization is, in general, difficult, the specific set function for the rank-one quadratic can be minimized in linear time. We show that the convex hull of the … Read more

ADMM and inexact ALM: the QP case

Embedding randomization procedures in the Alternating Direction Method of Multipliers (ADMM) has recently attracted an increasing amount of interest as a remedy to the fact that the direct n-block generalization of ADMM is not necessarily convergent ($n \geq 3$). Even if, in practice, the introduction of such techniques could mitigate the diverging behaviour of the … Read more

EFIX: Exact Fixed Point Methods for Distributed Optimization

We consider strongly convex distributed consensus optimization over connected networks. EFIX, the proposed method, is derived using quadratic penalty approach. In more detail, we use the standard reformulation – transforming the original problem into a constrained problem in a higher dimensional space – to define a sequence of suitable quadratic penalty subproblems with increasing penalty … Read more

A Geometric View of SDP Exactness in QCQPs and its Applications

Let S denote a subset of Rn defined by quadratic equality and inequality constraints and let S denote its projected semidefinite program (SDP) relaxation. For example, take S and S to be the epigraph of a quadratically constrained quadratic program (QCQP) and the projected epigraph of its SDP relaxation respectively. In this paper, we suggest … Read more

Tight bounds on the maximal perimeter and the maximal width of convex small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ vertices are not known when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ and $s\ge 3$, and show that the perimeters and the widths obtained … Read more

Strengthened SDP Relaxation for an Extended Trust Region Subproblem with an Application to Optimal Power Flow

We study an extended trust region subproblem minimizing a nonconvex function over the hollow ball $r \le \|x\| \le R$ intersected with a full-dimensional second order cone (SOC) constraint of the form $\|x – c\| \le b^T x – a$. In particular, we present a class of valid cuts that improve existing semidefinite programming (SDP) … Read more