Enhancements to the DIDO© Optimal Control Toolbox

In 2020, DIDO© turned 20! The software package emerged in 2001 as a basic, user-friendly MATLAB teaching tool to illustrate the various nuances of Pontryagin’s Principle but quickly rose to prominence in 2007 after NASA announced it had executed a globally optimal maneuver using DIDO. Since then, the toolbox has grown in applications well beyond … Read more

A new interior-point approach for large two-stage stochastic problems

Two-stage stochastic models give rise to very large optimization problems. Several approaches have been devised for efficiently solving them, including interior-point methods (IPMs). However, using IPMs, the linking columns associated to first-stage decisions cause excessive fill-in for the solution of the normal equations. This downside is usually alleviated if variable splitting is applied to first-stage … Read more

Polyhedral Approximation Strategies in Nonconvex Mixed-Integer Nonlinear Programming

Different versions of polyhedral outer approximation is used by many algorithms for mixed-integer nonlinear programming (MINLP). While it has been demonstrated that such methods work well for convex MINLP, extending them to solve also nonconvex problems has been challenging. One solver based on outer linearization of the nonlinear feasible set of MINLP problems is the … Read more

Improving solve times of stable matching problems through preprocessing

We present new theory, heuristics and algorithms for preprocessing instances of the Stable Marriage with Ties and Incomplete lists (SMTI), the Hospitals/Residents with Ties (HRT), and the Worker-Firms with Ties (WFT) problems. We show that instances of these problems can be preprocessed by removing from the preference lists of some agents entries that correspond to … Read more

A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

We translate the algorithmic question of whether to linearize convex Mixed-Integer Quadratic Programming problems (MIQPs) into a classification task, and use machine learning (ML) techniques to tackle it. We represent MIQPs and the linearization decision by careful target and feature engineering. Computational experiments and evaluation metrics are designed to further incorporate the optimization knowledge in … Read more

MathOptInterface: a data structure for mathematical optimization problems

JuMP is an open-source algebraic modeling language in the Julia language. In this work, we discuss a complete re-write of JuMP based on a novel abstract data structure, which we call \textit{MathOptInterface}, for representing instances of mathematical optimization problems. MathOptInterface is significantly more general than existing data structures in the literature, encompassing, for example, a … Read more

Exploiting problem structure in derivative free optimization

A structured version of derivative-free random pattern search optimization algorithms is introduced which is able to exploit coordinate partially separable structure (typically associated with sparsity) often present in unconstrained and bound-constrained optimization problems. This technique improves performance by orders of magnitude and makes it possible to solve large problems that otherwise are totally intractable by … Read more

A parallel splitting ALM-based algorithm for separable convex programming

The augmented Lagrangian method (ALM) provides a benchmark for tackling the canonical convex minimization problem with linear constraints. We consider a special case where the objective function is the sum of $m$ individual subfunctions without coupled variables. The recent study reveals that the direct extension of ALM for separable convex programming problems is not necessarily … Read more

A Distributed Quasi-Newton Algorithm for Primal and Dual Regularized Empirical Risk Minimization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving empirical risk minimization (ERM) problems with a nonsmooth regularization term. Our algorithm is applicable to both the primal and the dual ERM problem. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or … Read more

Linear Programming using Limited-Precision Oracles

Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactly and bounds are derived on the number of elementary arithmetic operations necessary, or the cost of all arithmetic operations … Read more