Outlier detection in regression: conic quadratic formulations

In many applications, when building linear regression models, it is important to account for the presence of outliers, i.e., corrupted input data points. Such problems can be formulated as mixed-integer optimization problems involving cubic terms, each given by the product of a binary variable and a quadratic term of the continuous variables. Existing approaches in … Read more

New Formulations and Pricing Mechanisms for Stochastic Electricity Market Clearing Problem

We present new formulations of the stochastic electricity market clearing problem based on the principles of stochastic programming. Previous analyses have established that the canonical stochastic programming model effectively captures the relationship between the day-ahead and real-time dispatch and prices. The resulting quantities exhibit desirable guarantees of revenue adequacy, cost recovery, and price distortion in … Read more

Democratization of Complex-Problem Solving: Toward Privacy-Aware, Transparent and Inclusive Optimization

Critical operations often involve stakeholders with diverse perspectives, yet centralized optimization assumes participation or private information, neither of which is a priori guaranteed. Additionally, decision-making involves discrete decisions, making optimization computationally challenging. Centralized formulations use approximations to manage complexity, often overlooking stakeholder perspectives, leading to bias. To resolve these challenges, we adopt a privacy-aware participatory-distributed … Read more

MOSDEX: A New Standard for Data Exchange with Optimization Solvers

This paper offers a new standard, called MOSDEX (Mathematical Optimization Solver Data EXchange), for managing the interaction of data with solvers for mathematical optimization. The rationale for this standard is to take advantage of modern software tools that can efficiently handle very large datasets that have become the norm for data analytics in the past … Read more

Adaptive Importance Sampling Based Surrogation Methods for Bayesian Hierarchical Models, via Logarithmic Integral Optimization

We explore Maximum a Posteriori inference of Bayesian Hierarchical Models (BHMs) with intractable normalizers, which are increasingly prevalent in contemporary applications and pose computational challenges when combined with nonconvexity and nondifferentiability. To address these, we propose the Adaptive Importance Sampling-based Surrogation method, which efficiently handles nonconvexity and nondifferentiability while improving the sampling approximation of the … Read more

Distributionally Robust Linear Quadratic Control

Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics and imperfect observations, subject to additive noise, with the goal of minimizing a quadratic cost function for the state and control variables. In this work, … Read more

Sampling-based Decomposition Algorithms for Multistage Stochastic Programming

Sampling-based algorithms provide a practical approach to solving large-scale multistage stochastic programs. This chapter presents two alternative approaches to incorporating sampling within multistage stochastic linear programming algorithms. In the first approach, sampling is used to construct a sample average approximation (SAA) of the true multistage program. Subsequently, an optimization step is undertaken using deterministic decomposition … Read more

Polyhedral Newton-min algorithms for complementarity problems

The semismooth Newton method is a very efficient approach for computing a zero of a large class of nonsmooth equations. When the initial iterate is sufficiently close to a regular zero and the function is strongly semismooth, the generated sequence converges quadratically to that zero, while the iteration only requires to solve a linear system. … Read more

On the Regulatory and Economic Incentives for Renewable Hybrid Power Plants in Brazil

The complementarity between renewable generation profiles has been widely explored in the literature. Notwithstanding, the regulatory and economic frameworks for hybrid power plants add interesting challenges and opportunities for investors, regulators, and planners. Focusing on the Brazilian power market, this paper proposes a unified and isonomic firm energy certificate (FEC) calculation for non-controllable renewable generators, … Read more