An active set method for bound-constrained optimization

In this paper, a class of algorithms is developed for bound-constrained optimization. The new scheme uses the gradient-free line search along bent search paths. Unlike traditional algorithms for bound-constrained optimization, our algorithm ensures that the reduced gradient becomes arbitrarily small. It is also proved that all strongly active variables are found and fixed after finitely … Read more

Algorithms for Cameras View-Frame Placement Problems in the Presence of an Adversary and Distributional Ambiguity

In this paper, we introduce cameras view-frame placement problem (denoted by CFP) in the presence an adversary whose objective is to minimize the maximum coverage by p cameras in response to input provided by n autonomous agents in a remote location. We allow uncertainty in the success of attacks, incomplete information of the probability distribution … Read more

Optimal Planning for the Electrification of Bus Fleets in Public Transit Systems

Electric vehicles (EV) pave a promising way towards low-carbon transportation, but the transition to all EV fleets creates new challenges for the public transportation sector. Despite increasing adoption of electric buses, the main challenges presented by the battery electric bus technology include the lack of charging facilities, the reduced operating capacity per battery charge compared … Read more

Closing Duality Gaps of SDPs through Perturbation

Let \(({\bf P},{\bf D})\) be a primal-dual pair of SDPs with a nonzero finite duality gap. Under such circumstances, \({\bf P}\) and \({\bf D}\) are weakly feasible and if we perturb the problem data to recover strong feasibility, the (common) optimal value function \(v\) as a function of the perturbation is not well-defined at zero … Read more

Markov Decision Process Design: A Framework for Integrating Strategic and Operational Decisions

We consider the problem of optimally designing a system for repeated use under uncertainty. We develop a modeling framework that integrates design and operational phases, which are represented by a mixed-integer program and discounted-cost infinite-horizon Markov decision processes, respectively. We seek to simultaneously minimize the design costs and the subsequent expected operational costs. This problem … Read more

Characterizing Rational Transplant Program Response to Outcome-Based Regulation

Organ transplantation is an increasingly common therapy for many types of end-stage organ failure, including lungs, hearts, kidneys and livers. The past twenty years have seen increased scrutiny of post-transplant outcomes in the United States, in order to ensure the efficient utilization of the scarce organ supply. Under regulations by the Organ Procurement Transplantation Network … Read more

A subspace inertial method for derivative-free nonlinear monotone equations

We introduce SILSA, a subspace inertial line search algorithm, for finding solutions of nonlinear monotone equations (NME). At each iteration, a new point is generated in a subspace generated by the previous points. Of all finite points forming the subspace, a point with the largest residual norm is replaced by the new point to update … Read more

Mixed-Integer Programming Approaches to Generalized Submodular Optimization and its Applications

Submodularity is an important concept in integer and combinatorial optimization. A classical submodular set function models the utility of selecting homogenous items from a single ground set, and such selections can be represented by binary variables. In practice, many problem contexts involve choosing heterogenous items from more than one ground set or selecting multiple copies … Read more

Multi-Stage Robust Mixed-Integer Programming

Multi-stage robust optimization, in which decisions are taken sequentially as new information becomes available about the uncertain problem parameters, is a very versatile yet computationally challenging paradigm for decision-making under uncertainty. In this paper, we propose a new model and solution approach for multi-stage robust mixed-integer programs, which may contain both continuous and discrete decisions … Read more

A Quasi-Newton Algorithm for Optimal Discretization of Markov Processes

In stochastic programming and stochastic-dynamic programming discretization of random model parameters is often unavoidable. We propose a quasi-Newton learning algorithm to discretize multi-dimensional, continuous discrete-time Markov processes to scenario lattices by minimizing the Wasserstein distance between the unconditional distributions of process and lattice. Scenario lattices enable accurate discretization of the conditional distributions of Markov processes … Read more