An approximation algorithm for multi-objective optimization problems using a box-coverage

For a continuous multi-objective optimization problem, it is usually not a practical approach to compute all its nondominated points because there are infinitely many of them. For this reason, a typical approach is to compute an approximation of the nondominated set. A common technique for this approach is to generate a polyhedron which contains the … Read more

Two decades of blackbox optimization applications

This work reviews blackbox optimization applications over the last twenty years, addressed using direct search optimization methods. Emphasis is placed on the Mesh Adaptive Direct Search (MADS) derivative-free optimization algorithm. The core of the document describes applications in three specific fields: Energy, materials science, and computational engineering design. Other applications in science and engineering as … Read more

Halting Time is Predictable for Large Models: A Universality Property and Average-case Analysis

Average-case analysis computes the complexity of an algorithm averaged over all possible inputs. Compared to worst-case analysis, it is more representative of the typical behavior of an algorithm, but remains largely unexplored in optimization. One difficulty is that the analysis can depend on the probability distribution of the inputs to the model. However, we show … Read more

Dynamic Discretization Discovery for Solving the Continuous Time Inventory Routing Problem with Out-and-Back Routes

In time dependent models, the objective is to find the optimal times (continuous) at which activities occur and resources are utilized. These models arise whenever a schedule of activities needs to be constructed. A common approach consists of discretizing the planning time and then restricting the decisions to those time points. However, this approach leads … Read more

Faster Lagrangian-Based Methods in Convex Optimization

In this paper, we aim at unifying, simplifying, and improving the convergence rate analysis of Lagrangian-based methods for convex optimization problems. We first introduce the notion of nice primal algorithmic map, which plays a central role in the unification and in the simplification of the analysis of all Lagrangian-based methods. Equipped with a nice primal … Read more

An echelon form of weakly infeasible semidefinite programs and bad projections of the psd cone

A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has nearly feasible solutions that approximate the constraint set to arbitrary precision. These SDPs are ill-posed and numerically often unsolvable. They are also closely related to “bad” linear projections that map the cone of positive semidefinite matrices to a nonclosed set. We describe … Read more

An Application of a Traveling Salesman Problem with Independent Clusters for Cash-Collection Routing

Published in Annals of Operations Research. https://doi.org/10.1007/978-3-031-47859-8_26 Motivated by a routing problem faced by banks to enhance their encashment services in the  city of Perm, Russia, we solve versions of the traveling salesman problem with clustering. To minimize the risk of theft, suppliers seek to operate multiple vehicles and determine an efficient routing; and, a single vehicle serves … Read more

Iteration complexity analysis of a partial LQP-based alternating direction method of multipliers

In this paper, we consider a prototypical convex optimization problem with multi-block variables and separable structures. By adding the Logarithmic Quadratic Proximal (LQP) regularizer with suitable proximal parameter to each of the first grouped subproblems, we develop a partial LQP-based Alternating Direction Method of Multipliers (ADMM-LQP). The dual variable is updated twice with relatively larger … Read more

Equipping Barzilai-Borwein method with two dimensional quadratic termination property

A new gradient stepsize is derived at the motivation of equipping the Barzilai-Borwein (BB) method with two dimensional quadratic termination property. A remarkable feature of the new stepsize is that its computation only depends on the BB stepsizes in previous iterations without the use of exact line searches and Hessian, and hence it can easily … Read more

An Inertial Block Majorization Minimization Framework for Nonsmooth Nonconvex Optimization

In this paper, we introduce TITAN, a novel inerTial block majorIzation minimization framework for non-smooth non-convex opTimizAtioN problems. TITAN is a block coordinate method (BCM) that embeds inertial force to each majorization-minimization step of the block updates. The inertial force is obtained via an extrapolation operator that subsumes heavy-ball and Nesterov-type accelerations for block proximal … Read more