Sufficient condition on Schrage conjecture about the completion time variance

We consider a single machine scheduling problem to minimize the completion time variance. This roblem is known to be NP-hard. We prove that if $p_{n-1} = p_{n-2$, then there is an optimal solution of the form $(n,n-2,n-3,…,n-4,n-1)$. A new lower bound are proposed for solving the problem. The test on more than 4000 instances shows … Read more

ROC++: Robust Optimization in C++

Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single- and multi-stage problems involving real-valued and/or binary decisions, and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a … Read more

The use of multi-criteria decision-making methods in project portfolio selection: a literature review and future research directions

In most project portfolio selection (PPS) situations, the presence of multiple attributes and decision-maker preference is inevitable. As Multi-criteria Decision Analysis (MCDA) methods provide a framework well-suited to deal with these challenges in PPS problems, the use of MCDA methods in real-life PPS problems has increased in recent years. This paper provides a comprehensive literature … Read more

The block mutual coherence property condition for signal recovery

Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1-\alpha\ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. … Read more

Manifold Identification for Ultimately Communication-Efficient Distributed Optimization

This work proposes a progressive manifold identification approach for distributed optimization with sound theoretical justifications to greatly reduce both the rounds of communication and the bytes communicated per round for partly-smooth regularized problems such as the $\ell_1$- and group-LASSO-regularized ones. Our two-stage method first uses an inexact proximal quasi-Newton method to iteratively identify a sequence … Read more

An algorithm for the Microaggregation problem using Column Generation

The field of Statistical Disclosure Control aims at reducing the risk of re-identification of an individual when disseminating data, and it is one of the main concerns of national statistical agencies. Operations Research (OR) techniques were widely used in the past for the protection of tabular data, but not for microdata (i.e., files of individuals … Read more

Vehicle Repositioning under Uncertainty

We consider a general multi-period repositioning problem in vehicle-sharing networks such as bicycle-sharing systems, free-float car-sharing systems, and autonomous mobility-on-demand systems. This problem is subject to uncertainties along multiple dimensions – including demand, travel time, and repositioning duration – and faces several operational constraints such as the service level and cost budget. We propose a … Read more

On the Complexity of Branching Proofs

We consider the task of proving integer infeasibility of a bounded convex set K in R^n using a general branching proof system. In a general branching proof, one constructs a branching tree by adding an integer disjunction at each node, such that the leaves of the tree correspond to empty sets (i.e., K together with … Read more

Closing the Gap in Linear Bilevel Optimization: A New Valid Primal-Dual Inequality

Linear bilevel optimization problems are often tackled by replacing the linear lower-level problem with its Karush–Kuhn–Tucker (KKT) conditions. The resulting single-level problem can be solved in a branch-and-bound fashion by branching on the complementarity constraints of the lower-level problem’s optimality conditions. While in mixed-integer single-level optimization branch- and-cut has proven to be a powerful extension … Read more

Equivalent second-order cone programs for distributionally robust zero-sum games

We consider a two player zero-sum game with stochastic linear constraints. The probability distributions of the vectors associated with the constraints are partially known. The available information with respect to the distribution is based mainly on the two first moments. In this vein, we formulate the stochastic linear constraints as distributionally robust chance constraints. We … Read more