Representation of the Pareto front for heterogeneous multi-objective optimization

Optimization problems with multiple objectives which are expensive, i.e. where function evaluations are time consuming, are difficult to solve. Finding at least one locally optimal solution is already a difficult task. In case only one of the objective functions is expensive while the others are cheap, for instance analytically given, this can be used in … Read more

On the intrinsic core of convex cones in real linear spaces

Convex cones play an important role in nonlinear analysis and optimization theory. In particular, specific normal cones and tangent cones are known to be convex cones, and it is a crucial fact that they are useful geometric objects for describing optimality conditions. As important applications (especially, in the fields of optimal control with PDE constraints, … Read more

Weak sharpness and finite termination for variational inequalities on Hadamard manifolds

We first introduce the notion of weak sharpness for the solution sets of variational inequality problems (in short, VIP) on Hadamard spaces. We then study the finite convergence property of sequences generated by the inexact proximal point algorithm with different error terms for solving VIP under weak sharpness of the solution set. We also give … Read more

Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning

Many decision problems in science, engineering and economics are affected by uncertain parameters whose distribution is only indirectly observable through samples. The goal of data-driven decision-making is to learn a decision from finitely many training samples that will perform well on unseen test samples. This learning task is difficult even if all training and test … Read more

A New Sequential Updating Scheme of the Lagrange Multiplier for Multi-Block Linearly Constrained Separable Convex Optimization with Relaxed Step Sizes

In various applications such as signal/image processing, data mining, statistical learning and etc., the multi-block linearly constrained separable convex optimization is frequently used, where the objective function is the sum of multiple individual convex functions, and the major constraints are linear. A classical method for solving such kind of optimization problem could be the alternating … Read more

Exact solution of the donor-limited nearest neighbor hot deck imputation problem

Data quality in population surveys suffers from missing responses. We use combinatorial optimization to create a complete and coherent data set. The methods are based on the widespread nearest neighbor hot deck imputation method that replaces the missing values with observed values from a close unit, the so-called donor. As a repeated use of donors … Read more

Scheduling Post-disaster Repairs in Electricity Distribution Networks with Uncertain Repair Times

Natural disasters, such as hurricanes, large wind and ice storms, typically require the repair of a large number of components in electricity distribution networks. Since power cannot be restored before the completion of repairs, optimally scheduling the available crews to minimize the cumulative duration of the customer interruptions reduces the harm done to the affected … Read more

Branch-and-Cut-and-Price for Multi-Agent Pathfinding

There are currently two broad strategies for optimal Multi-agent Pathfinding (MAPF): (1) search-based methods, which model and solve MAPF directly, and (2) compilation-based solvers, which reduce MAPF to instances of well-known combinatorial problems, and thus, can benefit from advances in solver techniques. In this work, we present an optimal algorithm, BCP, that hybridizes both approaches … Read more

Tractable Reformulations of Distributionally Robust Two-stage Stochastic Programs with $\infty- Distance

This paper studies a two-stage distributionally robust stochastic linear program under the type-∞ Wasserstein ball by providing sufficient conditions under which the program can be efficiently computed via a tractable convex program. By exploring the properties of binary variables, the developed reformulation techniques are extended to those with mixed binary random parameters. The main tractable … Read more

On the asymptotic convergence and acceleration of gradient methods

We consider the asymptotic behavior of a family of gradient methods, which include the steepest descent and minimal gradient methods as special instances. It is proved that each method in the family will asymptotically zigzag between two directions. Asymptotic convergence results of the objective value, gradient norm, and stepsize are presented as well. To accelerate … Read more