New solution methods for the block relocation problem

This technical report presents new solution methods for the block relocation problem (BRP). Although most of the existing work focuses on the restricted BRP, we tackle the unrestricted BRP, which yields more opportunities for optimisation. Our contributions include fast heuristics able to tackle very large instances within seconds, fast metaheuristics that provide very competitive performance … Read more

Tight global linear convergence rate bounds for operator splitting methods

In this paper we establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding … Read more

Improved convergence rates for Lasserre-type hierarchies of upper bounds for box-constrained polynomial optimization

We consider the problem of minimizing a given $n$-variate polynomial $f$ over the hypercube $[-1,1]^n$. An idea introduced by Lasserre, is to find a probability distribution on $[-1,1]^n$ with polynomial density function $h$ (of given degree $r$) that minimizes the expectation $\int_{[-1,1]^n} f(x)h(x)d\mu(x)$, where $d\mu(x)$ is a fixed, finite Borel measure supported on $[-1,1]^n$. It … Read more

A Second-Order Cone Based Approach for Solving the Trust Region Subproblem and Its Variants

We study the trust region subproblem (TRS) of minimizing a nonconvex quadratic function over the unit ball with additional conic constraints. Despite having a nonconvex objective, it is known that the TRS and a number of its variants are polynomial-time solvable. In this paper, we follow a second-order cone based approach to derive an exact … Read more

On Sampling Rates in Simulation-Based Recursions

We consider the context of “simulation-based recursions,” that is, recursions that involve quantities needing to be estimated using a stochastic simulation. Examples include stochastic adaptations of fixed-point and gradient descent recursions obtained by replacing function and derivative values appearing within the recursion by their Monte Carlo counterparts. The primary motivating settings are Simulation Optimization and … Read more

The SCIP Optimization Suite 3.2

The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic … Read more

Three Enhancements for Optimization-Based Bound Tightening

Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper … Read more

The Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems

We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonconvex nonsmooth optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential updates … Read more

Exact Solution Methods for the hBcitem Quadratic Knapsack Problem

The purpose of this paper is to solve the 0-1 k-item quadratic knapsack problem (kQKP), a problem of maximizing a quadratic function subject to two linear constraints.We propose an exact method based on semide nite optimization. The semide nite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point … Read more

A coordinate ascent method for solving semidefinite relaxations of non-convex quadratic integer programs

We present a coordinate ascent method for a class of semidefinite programming problems that arise in non-convex quadratic integer optimization. These semidefinite programs are characterized by a small total number of active constraints and by low-rank constraint matrices. We exploit this special structure by solving the dual problem, using a barrier method in combination with … Read more