Convex Ternary Quartics Are SOS-Convex
ArticleDownload View PDF
ArticleDownload View PDF
Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables, where selections within two implying sets imply a choice in a corresponding implied set. We call this polytope … Read more
The multi-stop station location problem (MSLP) aims to place stations such that a set of trips is feasible with respect to length bounds while minimizing cost. Each trip consists of a sequence of stops that must be visited in a given order, and a length bound that controls the maximum length that is possible without … Read more
The Multi-Vehicle Covering Tour Problem (m-CTP) involves a graph in which the set of vertices is partitioned into a depot and three distinct subsets representing customers, mandatory facilities, and optional facilities. Each customer is linked to a specific subset of optional facilities that define its coverage set. The goal is to determine a set of … Read more
Robust optimization is an approach for handling uncertainty in optimization problems, in which the uncertainty set determines the conservativeness of the solutions. In this paper, we propose a data-driven uncertainty set using a type of volume-based clustering, which we call Minimum-Volume Norm-Based Clustering (MVNBC). MVNBC extends the concept of minimum-volume ellipsoid clustering by allowing clusters … Read more
Due to their nested structure, bilevel problems are intrinsically hard to solve–even if all variables are continuous and all parameters of the problem are exactly known. In this paper, we study mixed-integer linear bilevel problems with lower-level objective uncertainty, which we address using the notion of Γ-robustness. To tackle the Γ-robust counterpart of the bilevel … Read more
This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this … Read more
We present a new algorithm for solving optimization problems with objective functions that are the sum of a smooth function and a (potentially) nonsmooth regularization function, and nonlinear equality constraints. The algorithm may be viewed as an extension of the well-known proximal-gradient method that is applicable when constraints are not present. To account for nonlinear … Read more
This paper proposes a bilevel hierarchy of strengthened complex moment relaxations for complex polynomial optimization. The key trick entails considering a class of positive semidefinite conditions that arise naturally in characterizing the normality of the so-called shift operators. The relaxation problem in this new hierarchy is parameterized by the usual relaxation order as well as … Read more
In automated decision making processes in the online fashion industry, the ‘predict-then-optimize’ paradigm is frequently applied, particularly for markdown pricing strategies. This typically involves a mixed-integer optimization step, which is crucial for maximizing profit and merchandise volume. In practice, the size and complexity of the optimization problem is prohibitive for using off-the-shelf solvers for mixed … Read more