Normalization of ReLU Dual for Cut Generation in Stochastic Mixed-Integer Programs
We study the Rectified Linear Unit (ReLU) dual, an existing dual formulation for stochastic programs that reformulates non-anticipativity constraints using ReLU functions to generate tight, non-convex, and mixed-integer representable cuts. While this dual reformulation guarantees convergence with mixed-integer state variables, it admits multiple optimal solutions that can yield weak cuts. To address this issue, we … Read more