A tailored Benders decomposition approach for last-mile delivery with autonomous robots

This work addresses an operational problem of a logistics service provider that consists of finding an optimal route for a vehicle carrying customer parcels from a central depot to selected facilities, from where autonomous devices like robots are launched to perform last-mile deliveries. The objective is to minimize a tardiness indicator based on the customer … Read more

On the Structure of Decision Diagram-Representable Mixed Integer Programs with Application to Unit Commitment

Over the past decade, decision diagrams (DDs) have been used to model and solve integer programming and combinatorial optimization problems. Despite successful performance of DDs in solving various discrete optimization problems, their extension to model mixed integer programs (MIPs) such as those appearing in energy applications has been lacking. More broadly, the question on which … Read more

Strong Optimal Classification Trees

Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality … Read more

Efficient presolving methods for the influence maximization problem in social networks

We consider the influence maximization problem (IMP) which asks for identifying a limited number of key individuals to spread influence in a social network such that the expected number of influenced individuals is maximized. The stochastic maximal covering location problem (SMCLP) formulation is a mixed integer programming formulation that effectively approximates the IMP by the … Read more

A converging Benders’ decomposition algorithm for two-stage mixed-integer recourse models

We propose a new solution method for two-stage mixed-integer recourse models. In contrast to existing approaches, we can handle general mixed-integer variables in both stages, and thus, e.g., do not require that the first-stage variables are binary. Our solution method is a Benders’ decomposition, in which we iteratively construct tighter approximations of the expected second-stage … Read more

An exact solution approach for an electric bus dispatch problem

We study how to efficiently plan the daily bus dispatch operation within a public transport terminal working with a fleet of electric buses. This requires to formulate and solve a new variant of the Vehicle Scheduling Problem model, in which one has to assign trip itineraries to each vehicle considering that driving ranges are limited, … Read more

Benders decomposition for Network Design Covering Problems

We consider two covering variants of the network design problem. We are given a set of origin/destination(O/D) pairs and each such O/D pair is covered if there exists a path in the network from the origin to the destination whose length is not larger than a given threshold. In the first problem, called the maximal … Read more

A Framework for Generalized Benders’ Decomposition and Its Application to Multilevel Optimization

We describe an algorithmic framework generalizing the well-known framework originally introduced by Benders. We apply this framework to several classes of optimization problems that fall under the broad umbrella of multilevel/multistage mixed integer linear optimization problems. The development of the abstract framework and its application to this broad class of problems provides new insights and … Read more

Submodular maximization of concave utility functions composed with a set-union operator with applications to maximal covering location problems

We study a family of discrete optimization problems asking for the maximization of the expected value of a concave, strictly increasing, and differentiable function composed with a set-union operator. The expected value is computed with respect to a set of coefficients taking values from a discrete set of scenarios. The function models the utility function … Read more

An Exact Solution Method for the TSP with Drone Based on Decomposition

The Traveling Salesperson Problem with Drone (TSP–D) is a routing model in which a given set of customer locations must be visited in the least amount of time, either by a truck route starting and ending at a depot or by a drone dispatched from the truck en route. We study the TSP–D model and … Read more