Polynomial Approximations for Continuous Linear Programs

Continuous linear programs have attracted considerable interest due to their potential for modelling manufacturing, scheduling and routing problems. While efficient simplex-type algorithms have been developed for separated continuous linear programs, crude time discretization remains the method of choice for solving general (non-separated) problem instances. In this paper we propose a more generic approximation scheme for … Read more

Epigraphical cones II

This is the second part of a work devoted to the theory of epigraphical cones and their applications. A convex cone $K$ in the Euclidean space $\mathbb{R}^{n+1}$ is an epigraphical cone if it can be represented as epigraph of a nonnegative sublinear function $f: \mathbb{R}^n\to \mathbb{R}$. We explore the link between the geometric properties of … Read more

Costs and benefits of robust optimization

In this exposition the robust counterpart approach by Ben-Tal, El Ghaoui and Nemirovski is investigated with respect to its costs and benefits, with the focus on the costs of robustification. Although robust optimization has gained more and more interest among both academics and practitioners and although this certainly represents a well-established theory, it is to … Read more

An Introduction to a Class of Matrix Cone Programming

In this paper, we define a class of linear conic programming (which we call matrix cone programming or MCP) involving the epigraphs of five commonly used matrix norms and the well studied symmetric cone. MCP has recently found many important applications, for example, in nuclear norm relaxations of affine rank minimization problems. In order to … Read more

Central Swaths (A Generalization of the Central Path)

We develop a natural generalization to the notion of the central path — a notion that lies at the heart of interior-point methods for convex optimization. The generalization is accomplished via the “derivative cones” of a “hyperbolicity cone,” the derivatives being direct and mathematically-appealing relaxations of the underlying (hyperbolic) conic constraint, be it the non-negative … Read more

Truss topology design with integer variables made easy

We propose a new look at the problem of truss topology optimization with integer or binary variables. We show that the problem can be equivalently formulated as an integer \emph{linear} semidefinite optimization problem. This makes its numerical solution much easier, compared to existing approaches. We demonstrate that one can use an off-the-shelf solver with default … Read more

Facial reduction algorithms for conic optimization problems

To obtain a primal-dual pair of conic programming problems having zero duality gap, two methods have been proposed: the facial reduction algorithm due to Borwein and Wolkowicz [1,2] and the conic expansion method due to Luo, Sturm, and Zhang [5]. We establish a clear relationship between them. Our results show that although the two methods … Read more

Primal-dual interior-point methods with asymmetric barrier

In this paper we develop several polynomial-time interior-point methods (IPM) for solving nonlinear primal-dual conic optimization problem. We assume that the barriers for the primal and the dual cone are not conjugate. This broken symmetry does not allow to apply the standard primal-dual IPM. However, we show that in this situation it is also possible … Read more

Lifting for Conic Mixed-Integer Programming

Lifting is a procedure for deriving valid inequalities for mixed-integer sets from valid inequalities for suitable restrictions of those sets. Lifting has been shown to be very effective in developing strong valid inequalities for linear integer programming and it has been successfully used to solve such problems with branch-and-cut algorithms. Here we generalize the theory … Read more

A polynomial-time interior-point method for conic optimization, with inexact barrier evaluations

In this work we develop a primal-dual short-step interior point method for conic convex optimization problems for which exact evaluation of the gradient and Hessian of the barrier function is either impossible or too expensive. As our main contribution, we show that if approximate gradients and Hessians can be computed, and the relative errors in … Read more