Machine Learning Algorithms for Assisting Solvers for Decision Optimization Problems

Combinatorial decision problems lie at the intersection of Operations Research (OR) and Artificial Intelligence (AI), encompassing structured optimization tasks such as submodular selection, dynamic programming, planning, and scheduling. These problems exhibit exponential growth in decision complexity, driven by interdependent choices coupled through logical, temporal, and resource constraints.  Classical optimization frameworks—including integer programming, submodular optimization, and … Read more

Properties of Enclosures in Multiobjective Optimization

A widely used approximation concept in multiobjective optimization is the concept of enclosures. These are unions of boxes defined by lower and upper bound sets that are used to cover optimal sets of multiobjective optimization problems in the image space. The width of an enclosure is taken as a quality measure. In this paper, we … Read more

Solving MINLPs to global optimality with FICO Xpress Global

We present the architecture and central parts of the FICO Xpress Global optimization solver. In particular, we focus on how we built a global solver for the general class of mixed-integer nonlinear optimization problems by combining and extending two existing components of the FICO Xpress Solver, namely the mixed-integer linear optimization solver and the successive … Read more

Global Optimization of Gas Transportation and Storage: Convex Hull Characterizations and Relaxations

Gas transportation and storage has become one of the most relevant and important optimization problems in energy systems. This problem inherently includes highly nonlinear and nonconvex aspects due to gas physics, and discrete aspects due to the control decisions of active network elements. Obtaining even locally optimal solutions for this problem presents significant mathematical and … Read more

Deterministic global optimization with trained neural networks: Is the envelope of single neurons worth it?

Optimization problems containing trained neural networks remain challenging due to their nonconvexity. Deterministic global optimization relies on relaxations which should be tight, quickly convergent, and cheap to evaluate. While envelopes of common activation functions have been established for several years, the envelope of an entire neuron had not. Recently, Carrasco and Mu\~{n}oz (arXiv.2410.23362, 2024) proposed … Read more

Global Optimization Algorithm through High-Resolution Sampling

We present an optimization algorithm that can identify a global minimum of a potentially nonconvex smooth function with high probability, assuming the Gibbs measure of the potential satisfies a logarithmic Sobolev inequality. Our contribution is twofold: on the one hand we propose a global optimization method, which is built on an oracle sampling algorithm producing … Read more

BattOpt: Optimal Facility Planning for Electric Vehicle Battery Recycling

The electric vehicle (EV) battery supply chain will face challenges in sourcing scarce and expensive minerals required for manufacturing and in disposing of hazardous retired batteries. Integrating recycling technology into the supply chain has the potential to alleviate these issues; however, players in the battery market must design investment plans for recycling facilities. In this … Read more

A Cutting-Plane Global Optimization Algorithm for a Special Non-Convex Problem

This study establishes the convergence of a cutting-plane algorithm tailored for a specific non-convex optimization problem. The presentation begins with the problem definition, accompanied by the necessary hypotheses that substantiate the application of a cutting plane. Following this, we develop an algorithm designed to tackle the problem. Lastly, we provide a demonstration that the sequence … Read more

Computing an approximation of the nondominated set of multi-objective mixed-integer nonlinear optimization problems

In practical applications, one often has not only one, but several objectives that need to be optimized simultaneously. What is more, modeling such real world problems usually involves using both, continuous and integer variables. This then results in multi-objective mixed-integer optimization problems, which are in focus of this paper. We present an approximation concept, called … Read more

Bounding-Focused Discretization Methods for the Global Optimization of Nonconvex Semi-Infinite Programs

We use sensitivity analysis to design bounding-focused discretization (cutting-surface) methods for the global optimization of nonconvex semi-infinite programs (SIPs). We begin by formulating the optimal bounding-focused discretization of SIPs as a max-min problem and propose variants that are more computationally tractable. We then use parametric sensitivity theory to design an effective heuristic approach for solving … Read more