Global Optimization Algorithm through High-Resolution Sampling

We present an optimization algorithm that can identify a global minimum of a potentially nonconvex smooth function with high probability, assuming the Gibbs measure of the potential satisfies a logarithmic Sobolev inequality. Our contribution is twofold: on the one hand we propose a global optimization method, which is built on an oracle sampling algorithm producing … Read more

BattOpt: Optimal Facility Planning for Electric Vehicle Battery Recycling

The electric vehicle (EV) battery supply chain will face challenges in sourcing scarce, expensive minerals required for manufacturing and in disposing of hazardous retired batteries. Integrating recycling technology into the supply chain has the potential to alleviate these issues; however, players in the battery market must design investment plans for recycling facilities. In this paper, … Read more

Exploring Nonlinear Distance Metrics for Lipschitz Constant Estimation in Lower Bound Construction for Global Optimization

Bounds play a crucial role in guiding optimization algorithms, improving their speed and quality, and providing optimality gaps. While Lipschitz constant-based lower bound construction is an effective technique, the quality of the linear bounds depends on the function’s topological properties. In this research, we improve upon this by incorporating nonlinear distance metrics and surrogate approximations … Read more

A Cutting-Plane Global Optimization Algorithm for a Special Non-Convex Problem

This study establishes the convergence of a cutting-plane algorithm tailored for a specific non-convex optimization problem. The presentation begins with the problem definition, accompanied by the necessary hypotheses that substantiate the application of a cutting plane. Following this, we develop an algorithm designed to tackle the problem. Lastly, we provide a demonstration that the sequence … Read more

Computing an approximation of the nondominated set of multi-objective mixed-integer nonlinear optimization problems

In practical applications, one often has not only one, but several objectives that need to be optimized simultaneously. What is more, modeling such real world problems usually involves using both, continuous and integer variables. This then results in multi-objective mixed-integer optimization problems, which are in focus of this paper. We present an approximation concept, called … Read more

Optimality-Based Discretization Methods for the Global Optimization of Nonconvex Semi-Infinite Programs

We use sensitivity analysis to design optimality-based discretization (cutting-plane) methods for the global optimization of nonconvex semi-infinite programs (SIPs). We begin by formulating the optimal discretization of SIPs as a max-min problem and propose variants that are more computationally tractable. We then use parametric sensitivity theory to design an efficient method for solving these max-min … Read more

Strong Partitioning and a Machine Learning Approximation for Accelerating the Global Optimization of Nonconvex QCQPs

We learn optimal instance-specific heuristics for the global minimization of nonconvex quadratically-constrained quadratic programs (QCQPs). Specifically, we consider partitioning-based convex mixed-integer programming relaxations for nonconvex QCQPs and propose the novel problem of strong partitioning to optimally partition variable domains without sacrificing global optimality. Since solving this max-min strong partitioning problem exactly can be very challenging, … Read more

Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8.0

For over ten years, the constraint integer programming framework SCIP has been extended by capabilities for the solution of convex and nonconvex mixed-integer nonlinear programs (MINLPs). With the recently published version 8.0, these capabilities have been largely reworked and extended. This paper discusses the motivations for recent changes and provides an overview of features that … Read more

A Successive Linear Relaxation Method for MINLPs with Multivariate Lipschitz Continuous Nonlinearities

We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate … Read more

Recursive McCormick Linearization of Multilinear Programs

Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce … Read more