A relaxed interior point method for low-rank semidefinite programming problems with applications to matrix completion

A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) … Read more

Domain-Driven Solver (DDS): a MATLAB-based Software Package for Convex Optimization Problems in Domain-Driven Form

Domain-Driven Solver (DDS) is a MATLAB-based software package for convex optimization problems in Domain-Driven form [11]. The current version of DDS accepts every combination of the following function/set constraints: (1) symmetric cones (LP, SOCP, and SDP); (2) quadratic constraints; (3) direct sums of an arbitrary collection of 2-dimensional convex sets defined as the epigraphs of … Read more

Using interior point solvers for optimizing progressive lens models with spherical coordinates

Designing progressive lenses is a complex problem that has been previously solved by formulating an optimization model based on Cartesian coordinates. In this work a new progressive lens model using spherical coordinates is presented, and interior point solvers are used to solve this new optimization model. Although this results in a highly nonlinear, nonconvex, continuous … Read more

Numerical solution of generalized minimax problems

This contribution contains the description and investigation of four numerical methods for solving generalized minimax problems, which consists in the minimization of functions which are compositions of special smooth convex functions with maxima of smooth functions (the most important problem of this type is the sum of maxima of smooth functions). Section~1 is introductory. In … Read more

A Proximal Interior Point Algorithm with Applications to Image Processing

In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nonsmooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying … Read more

Self-Concordance and Matrix Monotonicity with Applications to Quantum Entanglement Problems

Let $V$ be an Euclidean Jordan algebra and $\Omega$ be a cone of invertible squares in $V$. Suppose that $g:\mathbb{R}_{+} \to \mathbb{R}$ is a matrix monotone function on the positive semiaxis which naturally induces a function $\tilde{g}: \Omega \to V$. We show that $-\tilde{g}$ is compatible (in the sense of Nesterov-Nemirovski) with the standard self-concordant … Read more

Status Determination by Interior-Point Methods for Convex Optimization Problems in Domain-Driven Form

We study the geometry of convex optimization problems given in a Domain-Driven form and categorize possible statuses of these problems using duality theory. Our duality theory for the Domain-Driven form, which accepts both conic and non-conic constraints, lets us determine and certify statuses of a problem as rigorously as the best approaches for conic formulations … Read more

Towards an efficient Augmented Lagrangian method for convex quadratic programming

Interior point methods have attracted most of the attention in the recent decades for solving large scale convex quadratic programming problems. In this paper we take a different route as we present an augmented Lagrangian method for convex quadratic programming based on recent developments for nonlinear programming. In our approach, box constraints are penalized while … Read more

Deep Unfolding of a Proximal Interior Point Method for Image Restoration

Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and time-consuming methods. In contrast, deep learning offers very generic and efficient … Read more

Volumetric barrier decomposition algorithms for two-stage stochastic linear semi-infinite programming

In this paper, we study the two-stage stochastic linear semi-infinite programming with recourse to handle uncertainty in data defining (deterministic) linear semi-infinite programming. We develop and analyze volumetric barrier decomposition-based interior point methods for solving this class of optimization problems, and present a complexity analysis of the proposed algorithms. We establish our convergence analysis by … Read more