Improving relaxations for potential-driven network flow problems via acyclic flow orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles … Read more

Γ-counterparts for robust nonlinear combinatorial and discrete optimization

Γ-uncertainties have been introduced for adjusting the degree of conservatism ofrobust counterparts of (discrete) linear optimization problems under interval uncertainty. Thisarticle’s contribution is a generalization of this approach to (mixed-integer) nonlinear optimizationproblems. We focus on the cases in which the uncertainty is linear but also derive formulationsfor the general case. We present cases where the … Read more

Mixed-Integer Nonlinear Optimization for District Heating Network Expansion

We present a mixed-integer nonlinear optimization model for computing the optimal expansion of an existing tree-shaped district heating network given a number of potential new consumers. To this end, we state a stationary and nonlinear model of all hydraulic and thermal effects in the pipeline network as well as nonlinear models for consumers and the … Read more

The SCIP Optimization Suite 7.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies … Read more

Solving Mixed-Integer Nonlinear Optimization Problems using Simultaneous Convexification – a Case Study for Gas Networks

Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each … Read more

A Mixed-Integer PDE-Constrained Optimization Formulation for Electromagnetic Cloaking

We formulate a mixed-integer partial-differential equation constrained optimization problem for designing an electromagnetic cloak governed by the 2D Helmholtz equation with absorbing boundary conditions. Our formulation is an alternative to the topology optimization formulation of electromagnetic cloaking design. We extend the formulation to include uncertainty with respect to the angle of the incidence wave, and … Read more

Stochastic Dual Dynamic Programming for Multistage Stochastic Mixed-Integer Nonlinear Optimization

In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with \emph{non-Lipschitz-continuous} value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient … Read more

Sample Average Approximation for Stochastic Nonconvex Mixed Integer Nonlinear Programming via Outer Approximation

Stochastic mixed-integer nonlinear programming (MINLP) is a very challenging type of problem. Although there have been recent advances in developing decomposition algorithms to solve stochastic MINLPs, none of the existing algorithms can address stochastic MINLPs with continuous distributions. We propose a sample average approximation-based outer approximation algorithm (SAAOA) that can address nonconvex two-stage stochastic programs … Read more

Exploiting Partial Convexity of Pump Characteristics in Water Network Design

The design of water networks consists of selecting pipe connections and pumps to ensure a given water demand to minimize investment and operating costs. Of particular importance is the modeling of variable speed pumps, which are usually represented by degree two and three polynomials approximating the characteristic diagrams. In total, this yields complex mixed-integer (non-convex) … Read more

Optimization and Validation of Pumping System Design and Operation for Water Supply in High-Rise Buildings

The application of mathematical optimization methods provides the capacity to increase the energy efficiency and to lower the investment costs of technical systems, considerably. We present a system approach for the optimization of the design and operation of pumping systems and exemplify it by applying it to the water supply of high-rise buildings. The underlying … Read more