## Quadratic Optimization with Switching Variables: The Convex Hull for n=2

We consider quadratic optimization in variables (x,y), 0

We consider quadratic optimization in variables (x,y), 0

Motivated by modern regression applications, in this paper, we study the convexification of quadratic optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear objective, indicator variables, and combinatorial constraints. We prove that for a separable quadratic … Read more

Bilevel optimization problems have received a lot of attention in the last years and decades. Besides numerous theoretical developments there also evolved novel solution algorithms for mixed-integer linear bilevel problems and the most recent algorithms use branch-and-cut techniques from mixed-integer programming that are especially tailored for the bilevel context. In this paper, we consider MIQP-QP … Read more

We study the single allocation hub location problem with heterogeneous economies of scale (SAHLP-h). The SAHLP-h is a generalization of the classical single allocation hub location problem (SAHLP), in which the hub-hub connection costs are piecewise linear functions of the amounts of flow. We model the problem as an integer non-linear program, which we then … Read more

A specialized algorithm for quadratic optimization (QO, or, formerly, QP) with disjoint linear constraints is presented. In the considered class of problems, a subset of variables are subject to linear equality constraints, while variables in a different subset are constrained to remain in a convex set. The proposed algorithm exploits the structure by combining steps … Read more

We consider the asymptotic behavior of a family of gradient methods, which include the steepest descent and minimal gradient methods as special instances. It is proved that each method in the family will asymptotically zigzag between two directions. Asymptotic convergence results of the objective value, gradient norm, and stepsize are presented as well. To accelerate … Read more

The advances in conic optimization have led to its increased utilization for modeling data uncertainty. In particular, conic mean-risk optimization gained prominence in probabilistic and robust optimization. Whereas the corresponding conic models are solved efficiently over convex sets, their discrete counterparts are intractable. In this paper, we give a highly effective successive quadratic upper-bounding procedure … Read more

Semidefinite programming relaxations complement polyhedral relaxations for quadratic optimization, but global optimization solvers built on polyhedral relaxations cannot fully exploit this advantage. This paper develops linear outer-approximations of semidefinite constraints that can be effectively integrated into global solvers. The difference from previous work is that our proposed cuts are (i) sparser with respect to the … Read more

A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative mixed integer linear programming formulations. Our first formulation is based on casting a standard quadratic program … Read more

Iterative algorithms for the solution of convex quadratic optimization problems are investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on the performance of a Conjugate Gradients and a Full-Orthormalization methods are derived, the necessary quantities occurring in the theoretical bounds estimated and new practical algorithms derived. Numerical experiments suggest that the new methods have significant … Read more